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ABSTRACT

The finite element technique is extended to the refined analysis
of multilayer beams, plates and shells with no restriction placed upon
the ratios of the layer thicknesses and properties. The method is
applicable to structures vwherein shearing deformations are significant,
including sandwich-type structures.

Element stiffnesses developed are based on polynamial displacement
models and are for the linear elastic analysis of beams, circular
plates, and thin, axisymmetric shells of arbitrary meridian. Although
stiffnesses derived are for three-layered construction with similar
facings, the proposed theory is applicable to any flexural elements
and to any arrangement of laminations, provided the total thickness
is moderate. Here, doubly-curved elements have been used to represent
rotational shells. Computer programs have been written both for
static analysis and for free and forced steady-state vibration analy-
sis. Inclusion of rotatory as well as translational inertia allows
determination of natural thickness-shear frequencies and mode shapes
in addition to flexural vibration characteristics.

Finally, the use of viscoelastic layers for the damping of
flexural vibrations is discussed. To determine the effective damping
due to such layers, the analysis method is extended by means of the
correspondence principle for linear dyrnamic viscoelasticity.

Several examples are presented to illustrate the efficacy of the
method. Listings of the computer programs for axisymmetric shells are

given in the appendices.
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NOMENCLATURE

{} = column vector
< > = row vector
[ 1 = rectangular matrix

FJ = diagonal matrix
* = guperscript indicating a complex quantity
1,2 = subscripts indicating the principal directions of the shell
reference surface; subscripts indicating the real and imaginary

parts of a complex quantity, respectively

[A] = transformation matrix relating local nodal displacements to
local generalized displacements

a = area of reference surface over which stresses are specified;
radius of cylinder or sphere

[B] = matrix relating element strain components to element general~
ized co-ordinates

b = superscript indicating the bottom (or inside) facing of
sandwich construction

[c] = matrix relating total element stresses to total element strains
¢ = subscript indicating core layer of sandwich construction

[D] = matrix product [Z]T[C][Z] ; diagonal matrix of pivots resulting
from symmetric Gaussian elimination

D = energy dissipated in a single cycle of vibration

d = thickness distance between middle surfaces of facing layers for
symmetric sandwich construction

ds = element of arc length
E = Young's modulus
Elw) = complex modulus
E(t) = relaxation modulus
{ei} = vector which has all elements zero except the ith which is unity

[F] = flexibility matrix of overall assemblage of elements

{£.} i*® column of the flexibility matrix [F)
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{pP}

{p}

{q}

{q}
{Rr}

vii
subscript indicating the face layers of sandwich construction

matrix of layer bending, extensional and shear stiffness
(Eq. II.27)

shear modulus
total thickness of shell

. th
thickness of the Kk layer
subscript indicating the ith node of an element
complex compliance
creep compliance function
subscript indicating the jth node of an element
stiffness matrix for overall assemblage of elements
element stiffness matrix

. s s . th

subscript indicating the k layer

lower unit triangular matrix of mult: pliers resulting from
symmetric Gaussian elimination

total number of layers; span length of beam or cylinder

length of beam or plate element; chord length of shell element
mass matrix for overall assemblage of elements

moment stress resultant

extensional stress resultant

vector of nodal force amplitudes for steady-stete forced vibra-
tions

vector of loads

transverse load intensity for a beam or plate

vector of element nodal forces in local co-ordinates

shear stress resultant

vector of element nodal displacements in local co-ordinates
vector of element nodal forces in global co-ordinates

principal radius of curvature of shell reference surface



{u}

Yty
ur ;‘IZ

{v}

{v}

viii
vector of element nodal displacements in global co-ordinates
radial co-ordinate for a circular plate or rotational shell
vector of layer stress resultants
meridional co-ordinate in curvilinear co-ordinates

transformation matrix relating local co-ordinates *- global
co-ordinates

matrix product [A-l][T]

superscript indicating the transpose of a matrix
glass transition temperature of a polymer

melt temperature of a polymer

time; superscript indicating the top (or outside) facing f
sandwich construction

strain energy

vector of element displacements in local co-ordinates
tengential displacements of the shell

local translations of substitute shell element

translations of a rotational shell in cylindrical co-ordinates
vector of nodal forces for the overall assemblage of elements
potential energy of loads

vector of nodal displacement for the overall assemblage of
elements

volume of an element

total energy associated with the vibrating structure

vector of displacement amplitudes for vibretions

normal displacements of the shell

symmetric matrix for the eigenvalue problem in standard form
eigenvector of the matrix [X]

general local co-ordinate (Section II.2); axial co-ordinate of
a beam (Section III.l)

matrix relating total element strains to element strain components



{a}

€}
{e}

ix
thickness co-ordinate for beam or plate; cylindrical co-ordinate
for rotational shell
vector of element generalized co-ordinates
metrics of the shell reference surface
free index; angle indicated in Figure ITI.5
shear strain
index; logarithmic decrement of a demped structure
vector of total layer strains for an element
vector of layer strain components for an element
extensional streain

co~-ordinate normal to the shel’ surface

local rectilinear co-ordinate (Figure III.5); loss factor of a
damped structure

circumferential co-ordinate; angle by which strain lags behinéd
stress (Figure V.1)

change in curvature (Egs. (II.10)); shear stress correction
factor (Section II.1.3)

root of eigenvalue problem in standard form

Poisson ratio

Gaussian orthogonal curvilinear co-ordinates for the shell
surface (Figure II.1); local normalized co-ordinate for a
particular finite elemen* (Chap. III)

total potential energy of an element

density

vectcr of total layer stresses for an element

extensional stress

shear stress

matrix relating element displacements to element generalized
displacements

angle indicated in Figures II.5 and II.6

rotation of the tangent to the reference surface (total rota-
tion)



rotation of the normal to the reference surface (bending
rotation)

rotation due to sheari..; deformation oniy
angle indicated in Figure III.S
frequency of steady-state forced vibration

frequency of free vibration



CHAPTER I: INTRODUCTION

I.1. ueneral Objective

Multilayer construction has become an increasingly important form
in structural engineering as one means of achieving a beneficial com-
bination of the properties of two or more materials. Perhaps the best -
known examples of this type are the widespread "sandwich" structures
used in the aerospace industry. These combine thin, high-strength facing
layers with a thicker, light-weight core. Recently, layered structures
have also incorporated laminations of materials selected for their znergy
dissipation characteristics or their heat conduction properties. As new
materials are being developed and as the technology of composite con-
struction advances, there is a groving variety of versatile, multiply
layered configurations available.

The theory of stress analysis of multilayer structures is well est-
ablished. 1In general, two classifications of such structures can be
identified: (1) "laminates" in which layers of materials with similar
properties are bonded together and for which the Kirchhoff-Love hypothesis
is applied and (2) "sandwiches" in which some layers may be significantly
weaker than others and for ;hich transverse ghear deformation is taken
into account. Theory for the laminates [1-6]* has been successfully
applied to the analysis of general plates and shells using, for example,
the approximate methods of finite differences [7] and finite elements

(8]. However, despite the availability of sandwich theories of various

*
Numbers in brackets refer to references at the end of the paper.
1
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degrees of refinement in the literwture, there have been relatively few ‘
soiutions published that include the effects of transverse shear. More-
over, these solutions have been restricted to the simpler geometries
such as rectangular and circular plates and cylindrical and spherical
shells.

The purpose of the present work is to extend the finite element
method to the analysis of sandwich plates and shells. Although specific
solutions are to be presented here only for axisymmetric cases, the same
general approach, using existing standard finite element techniques,
will pemit the analysis of arbitrary configurations and boundary condi-
tions. In addition to the study of static and dynamic elastic problems,
this paper shall also consider the structural damping due to the inclu-
sion of viscoelastic layers. The damping characteristics can be obtained

as a natural adjunct of the ordinary procedures of structural analysis.



I.2. Survey of Previous wWorn

This dissertation is based upon material from three areas of
structural engineering, namely, sandwich theory, the finite element

methc , and structura damping. These topics are now briefly reviewed.

1+ 2.1. Sandwicl Theory

Extensive rev’ >ws and bibliographies of the theory of sandwich
structures are prescnted in References [9-12], and the reader is referred
to these for a more complete survey than the one given here.

The earliest application of sandwich construction was in the British
aircraft induspry. Consequently, some of the first published materials
on the topic are the works of Williams, Legget and Hopkins [13, 1k].
These authors accounted for shear by assuming that material lines origi-
nally straight and no-ma to the middle surface remain straight, but do
not remain normal. Among the increasing volume of literature published
in the postwar period are papers by E. Reissner [15, 16], Hoff and
Mautner [17], Hoff [18], and E-iagen [19]. Reissner approximated the
sandwicn as thin facings acting as membranes and a core with significant
stresses only in the transverse direction. The transverse behavior
includes both shear and normal deformation. With these simplifications,
th.e equations of sandwich plates and shells are analogous to those of
homogeneous structures for which the transverse effects are taken into
account [15, 20]. Reiscner also studied the large deflections of sand-
wich plates using the same assumptiunse [21]. Hoff's work on plates
included the flexural rigidity of the facings in addition to the effects
considered by Reissner. Finally Eringen added the influence of the
flexural rigidity of the core, neglecting cnly the shearing of the plate

facings.



It has become customary to designate sandwiches described by theories
which neglect the flexural and stretching effects of the core (e.g.,
Reissner [15] and Hoff [18]) as having a "weak" or "soft" core and those
which include these effects (Eringen [19]) a "stiff" or "strong" core.

An example of a shell theory for weak orthotropic cores is that developed
by Schmidt [22], whereas Grigolyuk and Kiryukhin [23] have derived the
shell equations for orthotropic facings and a stiff orthotropic core.
Nen-linear shell theories for large deflections of sandwiches with dis-
similar facings for the case of a weak core have been published by
Wempner and Baylor [24], Wempner [25] and Fulton [26]. Schmidt and Wem-
pner included the effect of the transverse normal deformation of the
core, but Grigolyuk and Fulton assumed that the transverse displacement
of all layers is the same.

Reissner [16, 21] showed that the assumptiocn of transverse incom-
pressibility is valid for beams and plates, but thet this pinching effect
could become important for curved structures under some circumstances,
such as uniform bending stress states of soft-core shells. However,
Raville's work [27-29] indicated that for some purposes pinching may be
neglected, and recently developed sandwich theories have tended to assume
an infinite transverse core modulus [12]. Other studies on the effects
of various approximations in sandwich theories have been conducted by
Koch [30] and Cook [31]. These two papers provide quantitative evalua-
tions of several common assumptions, including those of soft cores and
membrane facings.

In 1959, Yu [32] presented a new sandwich theory which includes the
bending and stretching effects and the transverse shear flexibility of
all layers. This theory places no restriction on the ratios of layer

thicknesses and material properties and has been extensively applied to
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vibration problems of sandwich structures including both shear and rota-
tory inertia [33 - 41]. In addition, a similar approach has been used
for two-layered plates and shells [42]. Throughout these works the
transvarse displacements of all layers are assumed to be the same. Free
vibrations of various types of sandwich structures have also been
studied by Kimel et al. [43], Raville et al. [4k4], Bolotin [45] and Chu
[46]. Bieniek and Fruedenthal [47]) have investigated the forced vibra-
tions of cylindrical sandwich panels. Finally, non-linear vibrations
have received the attention of Yu [48, 49] and Chu [50].

There is not a large body of published solutions for static prob-
lems of sandwich shells, although beam and plate problems have been
more widely cons:dered. Reissner [16] has included some solutions of
special cases and has emphasized the similarity between the equations
of sandwich theory and those for homogeneous shells with or without
transverse effects. Thus closed form and approximate solutions of the
types available for ordinary shells are also applicable to sandwiches
under the assumptions of Reissner's theory. For instance, Naghdi [51]
discussed the method of asymptotic integration as applied to homogeneous
shells of revolutioi. including shear. Some examples of more specific
problems are those treated by Rossettos [52], who considered shallow
spherica’ sandwich shells, and Kao [53], who solved multilayer circular

cylindrical sandwiches.

I1.2.2 The Finite Element Method

The finite element method has developed concurrently with the
increasing use of high-speed electronic digital computation and its
concommitant emphasis on discretized techniques in structural analysis.

In brief, this method consists of icealizing the structure as an



assemblage of geometrically simple domains (elements). Simple, but
relatively complete, displacement or equilibrium fields are assumed
over each domain; and a variational principle of mechanics is employed
to obtain a set of influence coefficients for the elemert. A set of
linear algebraic equations for the overall assemblage is obtained by
combining the coefficients for the individual elements so that contin-
uity of the assumed quantities is preserved at the interconnecting
nodes. These equations are modified for the boundary conditions and
solved to obtain the response of the structure. If displacement models
are assumed, the approach is called the "displacement method," and the
resulting stiffness coefficients are an upper bound. Conversely, the
"equilibrium method" (assumed equilibrium or stress models) results in
a lower bound [64]. A combination of assumed equilibrium and displace-
ment models over each domain is called the "mixed method." The vast
majority of work in the finite element method as applied to structural
mechanics has employed the displacement method, and the present work
also follows this approach. Also, for ease in mathematical manipula-
tions, models are generally of polynomial form and that, too, is the
case here,

In general, the finite element method has proved to be a successful
tool for the systematic analysis of ccmplex structures and the approxi-
mate solution of difficult problems in continuum mechanics.

A large number of papers has been puvlished during the last decade
on the finite element method, particularly on its applications to struc-
tural mechaniecs. Comprehensive reviews and bibliographies, as well as
a survey of the basic methods, can be found in References [54 - 60].
The following review is confined to formative works and to lfterature

on the analysis of plates and shells by the displacement method.



T

A primary stimulus to the development of the finite element analysis
of structures was the formalization of the theory of matrix transforma-
tion of structures by Argyris [61]. An early statement of the displace-
ment approach was given by Turner et al. [62]; and, in a later paper,
Turner [63] further systematized the analysis technique by formulating
an efficient assembly process for the direct stiffness method. Finally,
the mathematical foundations of the finite element approach were described
by Felippa and Clough [60]. This Reference includes a statement of nec-
essary requirements on the displacement model functions in order to
obtain convergence to proper stiffness coefficients. These requirements,
which are also given in References [65, 57 - 59], are that the displace-
ment model must provide (l).compatibility between elements and continuity
within the element and (2) completeness in the sense that rigid body
modes and constant strain states must be included. It should be noted
that in some cases useable results may be obtained with element displace-
ment models which do not satisfy these requirements [66, 76]. However,
it is known that displacements will not converge to correct values as the
mesh size is decreased, if the models fail to fulfill the requirements.

A comprehensive study of early plate bending elements was conducted
by Clough and Tocher [66]. They concluded that the best elements then
available were their own compatible triangular element [66] and the
incompatible rectangular elements derived by Adini and Clough [67] and
Melosh [68, 69]. A compatible rectangle [70] was found less favorable
mainly because it was lacking in completeness. Since then, improved
results have been obtained by Felippa [57, 59] using compatitle and com-
plete triangles and arbitrary quadrileterals composed of four such tri-
angles., He formalized a procedure for developing triangular elements of

various degrees of refinement, i.e., various higher order elements *“hat



not only satisfy the minimum conditions, but also provide extra degrees
»f freedom which permit a better solution with a coarser mesh. Felippa
[59] also developed a bending elewentc for plates of moderate thickness
which accounts for transverse shear in a fashion analogous to Timoshenko
beam theory [71, T2] and Mindlin's plate heory [73].

Most finite element analyses of arbitrary shell structures have
employed flat triangular elements. In representing a curved surface by
an assemblage of flat surfaces, the membrane and bending behavior are
uncoupled within the individual elements, but are coupled by the discon-
tinuities of slope at the interelement nodes. Clough and Johnson [Tk4]
used a system employing five degrees of freedom at each corner node and
achieved satisfactory results except in cases having complex membrane
states. Carr [75] developed a refined element with nine degrees of
freedom per node, obtaining better results at the expense of a more com-
plicated formulation. Finally, Johnson [76] combined four flat triangles
into a non-planar quadrilateral with five degrees of freedom at each
corner. This last technique provides superior solutions even for the
troublesome cases.

A greater amount of attention has been devoted to the less difficult
class of shell problems, the axisymmetric case. The conical frustrum
element has been widely used, although recently three axisymmetric types
of doubly curved elements have been introduced. Two early approaches by
Meyer and Harmon [77] and Popov et al. [78] utilize exact shell theory
bending displacements due to edge loading rather than simple displacement
models for each conical segment. Consequently, for membrane type prob-
lems some rather large inaccuracies are introduced. However, some useful
results are obtainable with this approach, particularly for edge effect

influence coefficients. Grafton and Strome [79] used conical elements



in a true finite element technique and Percy et al.[80] provided an
important correction to Grafton and Strome's strain energy integretion.
In addition, Percy et al. extended the application to asymmetric loading
cases by use of Fourier expansions in the circumferential directional.
Although the results provided by References [79 and 80] are an improve-
ment over previous work, for predominately membrane solutions there are
still inaccurate moments introduced through the approximation of a
doubly curved structure ty singly curved elements, particularly because
of the discontinuity of slope at the nodes of the substitute structure.
Jones and Strome [81) studied this problem and developed a doubly curved
element [82] which matched both the location and slopes of the original
shell at the nodal circles, thus avoiding unwanted discontinuities of
slope at these locations. Despite a marked improvement of solutions
achieved through the use of this new element, the geometric formulation
causes some difficulty where the latitude angle of the shell is small.
Stricklin et al. [83] also formulated a curved element which duplicates
both slope and position at the nodes, but which removes the geometrical
difficulties.

Representation of the meridian of the original shell by a series
of straight segments or simple curved segments, an approximation first
evaluated by Jones and Strome [81], was further investigated by
Khojasteh-Bakht [84]. He compared solutions obtained fror two differ-
ent doubly curved elements satisfying completeness anu compatibility,
one which matched position and slopes at the nodes and another which
additionally duplicated curvatures at these circles. Although both
solutions converged well, remarkably accurate results were obtained with
very few elements using the latter approach. For example, with only

three elements, near-perfect displacements and stress resultants were
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attained for a hemisphere under pure membrane loading. In addition,
Khojasteh-Bakht contrasied solutions vased on displacement models formu-
lated in both local curvilinear and local rectilinear coordinate
systems. The first was unable to accomodate certain constant strain
states and thus the second proved to be clearly superior. It should

be noted that for arbitrarr shells the use of a local rectilinear

system for the displacsment models makes it difficult to satisfy ~nm-
patibility at the nodes, but for rotational shells this is not a prob-
lem.

The central problem in applying the finite element riethod to
dynanic problems is the representation of the inertial properties of
the structure. There are two principal approaches, one being the sim-
ple lumping of masses at the nodes. Archer [85] has proposed the

second, the "consistent mass"

matrix which is derived from expressing
the kinetic energy in terms of the assumed displacement models. The
consistent approach preserves the mass distributi n and the coupling
between the various inertial effects, whereas the lumped approach leads
to an uncoupled (diagonal) mass matrix. Felippa [59] has compared the
two techniques and concluded that the lumped mass system is more prac-~
tical since its diagonal form reduces the computational effort and
permits re: ction c? the degree of the eigenvalue prcblem. However,

one advantage to the consistent mass is that it gives a true upper bound

on the frequencies.

I.2.3 Structural Damping

The prevention of near-resonent fatigue has long been a concern of
structural engineers. In eddition, vibration control is important in

reducing noise transmission or re-rediation, in attenuating oscillations



11

associated with external turbulence of aircraft, and in prevanting mal-
functions of components and instruments [91]. With the increasing use
of lightweight structures subject to intense excitaticn, particularly
in aserospace applications, damping has been recognized as an important
property in the overall performence of the structure. Because many
structures are subject to raandom vibrations over a broad spectrum, it
is no longer sufficient or even possible merely to identify the ratural
frequencies ana attampt to separate them from the exciting frequencies.
For example, jet and rocket engines may excite a large propertion of
the natural frequencies of the craft. Consequently, it is advantagecus
to employ meterials that have a capacity to dissipate energy and thus
to reduce resonant amplitudes. This type of energy dissipation is
known as "structural" or "internal" dawping.

Since there are few metals {one example, certain magnesium alloys
[87]) or other structural materials that possess both sufficient
strength and damping capacity, the emphasis in vibration ccntrol
methods has been cn adding dissipative layer. ‘nping tree uments
to the basic structures. These added materials are usually lightweignt
polymer plastics which have a negligable effect «u the strength of the
structure. However, when a damping material is used as the core filler
of sandwich-type structures, the dissipative layer is directly involved
in the load resisting mechanism as well as in vibration attenuation.
Some practical examples of damping due to dissipativ:> layers are damp-
ing tapes applied to the inside of airplane fusilages, coatings on the
inside of automobile hoods [87], and viscoelastic lsyers inccrporated
into ship structures [93]7 The same principles have even been applied
to vibration control in buildings and large structures [90]. As this

dissertation is concerned with lasyered ccnstruction, the following
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survey of work in the field of structural damping concentrate: on
gpproaches in which dissipative layers are employed.

Lazan [87, 94] and Blanchflower [91] have considered the damp-
ing properties of materials. Two categories of mechanical damping
are distinguished, that which is amplitude dependent and that
which is not. Amplitude-dependent energy dissipation becomes appre-
ciable only in conjunction with large strains and deflections. Hence
Tor small deflecticn theories, such as will be used herein, the ampli-
tude-independent energy dissipation is cf the greatest significance.
This type of damping is characteristic of materials which have rate-
dependent stress-strain laws and elliptical hysteresis loops. There-
fore, the complex modulus represent;EE%E'ETrzanear viscoelasticity is
usuaily a good approximation to the dissipative behavier I94). Vari-
ous specific polymers that can be so characterized and that have
proved useful for vibration control were described by Ungar and Hatch
[95] and by Oberst et al. [$6]. In addition, new synthetics for damp-
ing applications are steadily teing developed [e.g., 97, 98]. The
viscoelastic and dissipative properties of such polymers will be dis-
cussed in Chapter V.,

Two major structural damping mechanisms cof multilayer composite
structures were discussed by Ross et al. [88] and by Kerwin [92]. The
first is the "free layer" mechanism in which the —riscoelastic material
is a surface coating. Thus, during flexural behavior, this damping
layer acts primarily in extension. The seco:d mechanism is the "con-
strained layer" where the dissipative material occurs betweea two
stiffer laminations. This configuration causes the softer layer to
defcrm mostly by shearing. Ross et al. [88]) pointed out that, on an

equal weight basis, damping treatments that deform primarily in shear
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are likely to be more effective than those deforming in extension.

The earliest investigations into structural damping due to visco-
elastic layers were carried out by Oberst [99, 100] and by Liénard
[101]. These authors developed expressions for the effective damping
of plates due to the addition of a free layer of viscoelastic damping
material. Schwarzl [102] considered the coupled and uncoupled bending
and extensional vibrations of a two-layered viscoelastic beam. Finally,
Fertelendy {89] has used exact elas.icity solutions to study the effect
of viscoelastic membrane coatings on plates. In addition, he treated
general vibration problemg of homogeneous bodies maae of dissipative
matevial.

Much greater attention has been given to the constrained layer
mechanisms, particularly in view of the development of "damping tapes"
[103]. These tapes are two-layer treatments in which one layer is both
adhesive and dissipative and the other is a thin foil which serves as a
constraining layer. Ross et al. [88], Ungar and Ross [104] and Kerwin
[105] have developed the theory of these tapes and have obtained reason-
able verification with experiments. Constrained layer dasmping in
sandwich plates were studied by Plass [106] using a standard solid model
for the viscoelastic behavior of the core. The complex modulus repre-
sentation has been applied to sandwich beams and plates by Ungar [107]
and Mead [108]. Among other authors who have also considered the
effective damping of flat sandwich structures are DiTaranto and Blasin-
game [109 - 112] and Bert et al. [113]. Design considerations were
discussed by Ruzicka et al. [11k],

Yu has applied his theory for sandwich behavior to the study of
damped vibrations by using the complex modulus approach [115]. An eval-

uation of the approximations of Yu's theory in this application is
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provided by Hertelendy and Goldsmith [118], who compare the approach
with an exact extended Rayleigh-Lamb solution. In addition, Yu has con-
sidered the damping of sandwich shells [116] and, together with Ren
[117], the damping of two-layer plates and shells. Bieniek and Freud-
enthal [47] also included structural damping in their study of the
forced vibrations of sandwich shells.

Finally, it is interesting to note that vibration experiments with
layered specimens are an important means of determining the dynamic vis-
coelastic properties of materials. Nicholas and Heller [119] employed
cantilever sandwich beams with cores made of elastomers in order to
determine the complex shear modulus of these polymers. Nashif [120] has
advocated the use of specimens with symmetric viscoelastic coatings to

ascertain the damping properties of the applied material.
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I.3. Outline and Assumptions

As stated previously, the objective of this dissertation is to
extend the finite element method of analysis to multilayer beams, plates
and shells having layers flexible in transverse shear. A generaljzed
theory analogous to Ya's sandwich theory [32] is adopted for this pur-
pose. In Chapter II it is pointed out how this formulation can be
applied to one- and two-dimensional finite element discretizatioms.
However, for the sake of simplicity, specific derivations are carried
out only for the case of three-layered construction symmetric about the
middle surface and, only for configurations that may be represented by
a one-dimensional finite element mesh. Thus, in Chapter III, the stiff-
ness matrices and consistent load vectors for beams, axisymmetric
circular plates and rotational shells are derived and applied to the
static analysis of elastic structures. For the axisymmetric shells, the
doubly curved element due to Khojasteh-Bakht [84] is employed. Through-
out this work, assumed polynomial displacement fields and the direct
stiffness method are used.

The free vibration analysis of elastic sandwich structures is the
subject of Chapter IV. Masses are lumped along a normal to the middle
surface in order to represent both the rotatory and translational iner-
tia in uncoupled form. In this manner it is possible to obtain the
thickness-shear as well as the flexural natural frequencies. In the
former mode, shear deformations predominate over the flexural waves,
This type of behavior is important for some types of soft-core sand-
wiches, The dynamic analysis has not yet been extended to initial value
problems because it is felt that the free vibration investigation is a
satisfactory test of this approach to discretization. Given the ability

to obtain reasonable natural frequencies and mode shapes, it is possible
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to apply mode superposition or numerical integration techniques with
some confidence,

In Chapter V, damping by the inclusion of viscoelastic layers is
studied using the complex modulus representation of linear viscoelas-
ticity. Since polymers are the most widely-used damping materials in
composite structures, a discussion of the viscoelastic properties of
these materials is included. Special attention is devoted to the tem-
perature and frequency dependence of the properties and an attempt is
made to account for frequency dependence in calculating the effective
damping of multilayer structures. It should be noted that procedures
used in Chapter V are not restricted to layered structures; rather,
they can be applied to any finite element representation of a linear
viscoelastic continuum subject to steady state oscillations.

The following assumptions apply throughout this paper. Other
assumptions of lesser importance will be introduced in the applicable
sections.

1. Displacements and strains are sufficiently small so that the
linear theories cof elasticity and dynamic viscoelasticity apply.

2. Perfect bonding occurs between adjacent layers of the struc-
ture.

3. The transverse displacement of all layers is the same at a
given location of the middle surface of the structure. In other words,
there is no pinching deformation.*

4. Shells are thin in the sense that products of thickness with
curvature are much smaller than unity (&R <<1) .

5. Material lines in each layer originally straight and normal to

*
See the discussion of this assumption in Section II.l.1.
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the middle surface remain straight after deformation, but no longer
remain normel. The difference in shear strain in the several layers
manifests itself in warping of the cross-section at the interfaces.

6. The materials of each layer are linearly elastic and isotropic.
However, the procedure can be easily modified for anisotropic behavior
by substituting the appropriate matrix of material properties.

T. All layers are "stiff" in that tangential effects are taken
into account. However, this assumption can be relaxed for a particular
layer by assigning a zero Young's modulus.

8. All layers are flexible in shear (see 5 above) but this
assumption can be relaxed for a particular layer by assigning an

infinjte shear modulus.



CHAPTER II: GENERAL THEORY AND THE FINITE ELEMENT METHOD

I1.1. General Theory

Consicder an arbitrary multilayered shell with individual laminsa-
tions of constant thickness. Let a reference surface within the shell
be parallel to the layer interfaces and let &l and £2 be Gaussian
orthogonal curvilear co-ordinates for the surface. Moreover, let the
co-ordinate iines coincide with the lines of principal curvature of
the surface and let { be a co-ordinate normal to the surface (See
Figure II.1l). With these assumptions a line element in the space
surrcunding the reference surface can be expressed in terms of the
differentials of the orthogonal curvilinear co-ordinates as follows:

2 2
ds = oy

i 2
1- %—fa&i+a§k.- %—1 dég + dC2 (11.1)
1 2

where al and a2 are the surface metrics and Rl and R2 are the

principal radii of curvature. Displacements of the reference surface

corresponding to the co-ordinates El s £2 and [ are defined by

[
|

up = up(£,E,) (11.2)
o = wO(E),E))

respectively. Hereafter, Love's first approximation [121] for thin
shells will be adopted. That is, the thickness of the shel’ is con-

sidered small as compared to the radii of curvature and thus

c/RB <1 ,B=1,2. (11.3)
18
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In effect, this means that the variation of curvature “hrough the thick-~
ness of the shell is neglected. TFinally, the rotations of the tangents

to the reference surface are:

(¢]
(¢] u

X =X(E ’E)=L_3V_+_§, g=1,2. (II.)")
B B °1°72 GB BEB 8

In the following, the subscript B may take the values 1 or 2, and
the subscript & will then take the opposite value. The summation

convention does not apply.

IT.1.1. Kinematic Assumptions

To represent the behavior of the shell layers, a generalized the-
ory similar to Yu's sandwich theory [32] is adopted. No restriction
is placed on the relative layer thicknesses or properties, provided
only that the total thickness is sufficiently small so that Equations
(I1.3) apply. In the following, consider the kth layer as identi-
fied by the subscript k . A normal thickness co-ordinate colinear
with ¢ , but with its origin at the middle surface of the kth layer
is designated Ck . In other words, the reference surface is given by
Z = 0 and the middle surface of layer k 1is given by Ck =0 . Die-
placement quantities at the middle surface of the kth layer are
referenced by the subscript k and the superscript o . In addition,
the value of T at the face of layer k closer to the reference sur-
face is indicated by z(k) (See Figure II.2).

First, it is assumed that the transverse displacements -f all
layers are the same, i.2., that the transverse Young's moduli of the

layers are effectively infinite.
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W, =W =W (11.5)

Reissner [16] has shown that this assumption can cause appreciable error
for certain cases such as the uniform bending-stress states of shells
with very soft layers. However, there are several classes of problems
for which the hypothesis of Equation(II.5) is admissable. These
include (1) beam and plate problems [16], (2) free vibration problems,
provided thickness pinching modes are not important, and (3) edge,
concentrated, and partial loading problems where pinc .ng effects
remain localized [16]. 1In addition, since all layers are assumed
"stiff" (Section I.3), it is not unreasonable to accept Equation (II.5)
if one is aware of the potential inaccuracies in applying the theory
to composite structures with very soft layers [16, 27-29, 12].

Next, it is assumed that material lines originally straight and
normal to the middle surface of each layer remain straight but do not
necessarily remain normal to the deformed surface. This implies that
the transverse shearing deformation of each layer is independent of
the normal co-ordinate, Hence, the shear rotation of the k#h layer
is represented by some average value of the shear strain which is a

function only of the surface co-ordinates El and 52 :

Yok = YBk(El,Ez) (11.6)

Another implication is that the tangential displacements of the kth

layer may be represented by the displaccments of the middle surface of
the layer and by the rotation of the normals to the middle surface sas

follows:

Ugy = Vg - Ck(XB - YBk) (11.7)
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Note that the difference between this formulation and the Kirchhoff-Lcve
hypothesis is the fact that the rotation of the normal is no longer
equal to the rotation of the tangent to the middle surface. Thus the
preseat theory is analogous to the theories for homogeneous structures
which include the effects of transverse shear [71-T3, 59, 21].

Finally, since perfect bonding between layers is assumed, the

tangential displacements must be continuous across th~2 interfaces of
the composite shell. This condition leads to the following expressions

for the tangential displacements of the middle surface of the kth

layer, where k > 0 , I t there be k - 1 1layers between the kth

layer and the O-th (zero-th) layer which contains the reference sur-

face,
O = - z(k+1) + (k) + z(1) + kgl [z(m+1) - g(m)] +
Bk - UB 2 Xg YBo T L) Yém

o Bleed) - z(k) = O (£ .£) (11.8)
2 Yex = Vg c10%2’ -
For k=0 or 1 , the summations drop out sud the Equations (II.8)

still apply, where (1) and Z(0) are the interfaces of the zero-th

layer.

IT.1.2, Strain-Displacement Equations

The strain-displacement equation from classical linear shell
theory, (e.g., Reference {122]) are applied. For the K0 layer, the

equations are:



e3

e =il _Bk _ k., —
Bk aB 3&8 RB a8a6 Ee
u u o u
Yook = o 3 e *"1‘5'2_ . (11.9)
1 1 2 2 2 1
ow u u
-1k, Bk Bk

'Y =
Bk g BKB 14 RB

The in-surface strains may be written in the following form by substi-

tuting Equations (II.5), (II.6) and (II.7) into Equations (II.9):

o

6k = Bk * “k gk
(II.10e)
=v2. +r «
Yiox = Yok T i F1ok
In these equations the middle surface strains are given by
o ¢
o }__BuBk ) KS Usie BGB
Bk o3 BEB RB Gl aEG
) e (IT.10b)
O -2 B [Pk 4 Mg
12k o, Bil o, o, 352\ oy
and the changes in curvaeture are giver
« - .l——-—a— (X _ Y \ _ (XG - Yék) aae
1k aB BEB B Bk aBaé 856
(1T.10¢)
e a XoYax| M3 (X Ylk)
12k &) agl a, ] a, 352 o,

In order to consider the transverse shear strains, the tangential
displacements of the kth layer must te written in terms of the ref-
erence surface displacements, TFor example, Equations (I1.7) and

(I1.8) can be combined to give



24
_ .0 (k+1) + Z(k)
uBk - uB - C(XB - YB) - 5__2__9_. YBk + (1) YBo +

k-1
+ ) lg(m+1) - ?;(m)]YBln

o=l

r(k+l) - &(k)
* ? Yk

Substitution of this and Equations (II.5) and (fI.6) into the appropri-

ate equation from (II.9) results in

o
1w, U8 z z(k)
Yo =5t 5= (g = Yg) =F-(Xg = ¥g) + Yo, +
Btk " ag 9, " Rg T BT BT T 8T B R, Bk
L L ) - e@)]
RB Bo = 2 RB Bm

The last four terms of this equation are negligible in comparison to
the first three terms urier the thin shell assumptions of Equations
(II.3). Hence, using the Fquations (II.lk), ths transverse shear

strains are given by

Yook = op 35, TRy X8 ™ Yax) = Ve (xr.12)

which i1s consistent with the kinematic assumptions.

IT.1.3. Stress-Strain kelations

Assuming that the in-surface stresses and strains can be repre-
sented by a state of generalized plane stress, the stress-strain

equations for the kth layer and an isotropic meterial are given by

_ 2 2
L Ek/(l -vk) vkEk/(l - vk) 0] €k
2 2
Oy 3= VkEk/(l - vl) Ek/(l - vk) 0 | € (11.12)
Tiok) L 0 0 G Y12k
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For an anisotropic material the apo-opriate constitutive equations
would be used in place of Equations (I1.12). The 3 x 3 matrix would
deperd upon both the particular constitutiive law and the orientation
of materisl property axes in relation to the co-ordinata lines (lines
of principal curvature). For example, where a meterial is orthotropic
within the surface and has axes of orthotropy coincident with the

co-ordinate lines, the stress-strain equetions are

-

%1% B/ (L = vV ) Y Ep /L = Vv, ) 0 (Elk
Top )= vaElk/(l - vlkvak) Ezkl(* - vlkvzk) n € (11.13)
Gox) L 0 0 Gy \ Y10k

where v2kE1k = VlkE2k .

Since the transverse shear strain has beer assumed to be constant
across the thickﬁess of each layer, the corresponding shear stress is
likewise constant and is directly proportional to the shear strain.
However, the average shear strain which may provide a good approxima-
tion to the shear rotation does not necessarily provide an adequate
representation of the transverse shear-stress resultant. Therefore,

a shear-stress ccrrection factor is used in conjunction with the

transverse stress-strain equations for the kth layer as follows:

Tark = “x Ok Y8k (I1.14)

The shear-stress correction factor, Kk , is analogous to that used
in the theory for homogeneous structures [T1-T3, 123, 124]. One
method of assigning a value to this factor is to compare the approxi-
mate theory with exact theory for some aspect of behavior. For

example, Mindlin [73] has chosen k = ﬂ2/12 for homogeneous plates so



26

that the simple thickness-shear frequency from both theories match.
Bert et al. [113] have pointed out that one value for a dynamic cor-
rection factor may permit good estimates of natural frequencies,
whereas a different value may produce better approximations to mode
shapes. It is difficult to make a definitive recommendation for a

specific value or expression for K, Dbecause it is apparent that

k
this factor is dependent upon both the configuration of the multi-
layer construction (number of layers, ratios of thicknesses and prop-
erties) and the specific application (static or dynamic analysis).
Additional factors may also influence the selection. For the dynamic
analysis of three-layered sandwich comstruction with thin, heavy
facings and a light, weak core, Yu [32, 33] has suggested values very
close to unity. Other investigators [113] have derived similar
magnitudes; some recommendations range as high as 2.2 [125]. 3Since
most of the applications later in this paper are to three-layered struc-
tures'with relativeiy thin facings and a relatively flexible core, a
value of unity will be used herein.

In discussing the transverse shear stress, it should be noted
that the present approximate tiheory does not provide for continuity of
this stress at the interfaces, nor does the shear stress vanish at the
free surfaces.* However, the assumption of a constant shear strain
(2nd thus a constant shear stress) for each layer is consistent with
the philcsophy of the finite element method. That is, an approximate

simple displacement patiern which satisfies compatibility is hypothe-~

sized and then a variational theorem is used to obtain an orcimal

*
See footnote on next page.
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*
approximation of equilibrium. (See Section I.2.2.)

II.1.Lk., Stress Resultants

The stress resultants for the k#h layer can be obtained by inte-

grating the stresses over the thickness.

h 2
(Noy Mgy k %8k
=f (1,;k) az, (1I1.15a)
(N oMy -h, /2 Tyok
Q. = thkKkYBCk (I1.15b)

where h_= |z(k + 1) —z(k)| is the thickness of the layer. By using
Equation (II.12), it is possible to express the first set of resultants
in terms of the middle surface strains and the changes of curvature of
Equations (II.10). Then the integrations can be evaluated in terms of
the extensional, bending and shear stiffnesses of the layer.

The total stress resultants for the shell are.obtained from the
individual resultants of Equations (II.1l5) by summing with respert to

the reference surface. Let L be the total number of layers.

~

*During the early stages of this investigation, a finite element was
developed for sandwich beams using a quadratic variation of shear
through the depth such that the shear strain and stress vanished at the
free surfaces. This variation was derived on the basis of a linear
variation of bending stresses over the depth. Zdecause of the more
complex nature of the warping in this case, the formulation was
restricted to beams having a continuous shear diagram. That is,
interelement compatitility was maintained for all the lsyer shears.

A linear variation of shear strain over the length was used. For beams
with dimensions and properties typical of sandwich construction,
results using this elemert were practically indistinguishable from
those using a constant shear strain across the thickness. Hence the
more complex formulation was discarded in favor of the approximate one.
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N,V= ] (N (II.16a)

M N

M
S R GRS 1¢9) B

2
M12 k=1 M12k lek

(11.16D0)

The sign conventions for these stress resultants are shown in Figure (11.3).

II.1.5. Application to the Finite Element Method

For the theory presented above, the following displacements are nec-
essary to describe completely the behavior of the shell:

1. The normal displacement of the reference surface, w .

2. The tangential displacements of the reference surface, ui

- 3. The rotations of the tangents to the refererce surface, Xl

4. The shear rotations of each of the layers, Y1k and Yoy for
k=12, ..., L.
For one-dimensional cases, such as axisymmetric shells, the number of
displacements in 2 through 4 is halved. Another special case is that
of symmetry about the reference surface, for which the number of each
of the displacements in L are reduced by L/2 if L 1is even, or by
(I-1)/2 if L 1is odd.

In the finite element method, the deformations of an element are
continuous functions in the local co-ordinate system and are expressed

in terms of the nodal values of the displacements. In general, for each
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primary external node, all of the above displacements are selected as
unknowns. Depending upon the level of refinement of the displacement
models, some of the displacements may also be chosen as additional de-
grees of freedom at internal nodes or at secondary external nodes.*
As an example, consider the planar quadrilateral assembled from four
triangles used by Johnson [76] for the analysis of singly curved shells
(See Figure II.U). For such structures, the nodal lines are coincident
with lines of principal curvature. The bending is represented by a
cubic normal displacement model after Hsieh, Clough and Tocher [66]
whereas the membrane behavior is approximasted by a quadratic variation
of tangential displacements (linear strai: triangles of Reference [58])
with the external boundaries constrained to deforr 1 -arly. If the
layer shear strains are modeled in the same way as the membrane dis-
placements, a total of 33 + 18L degrees of freedom would be required:
(1) at nodes 1 to 5, displacements of type 1,2,3, and 4 contributing
5 + 2L degrees of freedcm per node: (2) at nodes 6 to 9, displacements
of type 2 and U4 contributing 2 + 2L degrees of freedom per node. '

In assembling the elements into a representation of the overall
shell, compatibility usually must be maintained for all the disﬁlace-
ment degre;s of freedom occurring at the interelement nodes. However,
when the t?ansverse shear behavior is included, some continuity condi-
tions must be removed in order to permit the "kinking" associated with
discontinuities of the shear stress resultant. These discontinuities
occur at transverse line loads. Thus, the necessary andi sufficient,
requirement for compatibility of the assemblage is interelement contin-

uity on the following nodal displacements:

*
A primary external node is, for example, a node occurring at a corner

of a two-dimensional element. A secondary external node occurs at mid-side
of such an element.
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A. The normal displacement of the reference surface, w° .
B. The tangential displacements of the reference surface, ui and
C. The rotations of the normals to the reference surface (i.e., the
rotations associated with bending), Xp1 and Xpo
D. The shear warping angles at each of the layer interfaces,

) and ) for k=1,2, ..., L-1 .

(Y3 (x#2) ~ Y1k (Yo(xe1) = Yox

The reduction of the number of tliese displacements for theé special -ases
i$ $imilar to that for the basic displacements 1 to 4 above.

Comparing displacements A to D with 1 to 4, it is appc ent that, in
addition to modifying the character of some of the quantities, the total
number of displacements per node has been reduced by two. That is, the
number of continuity conditions has been decreased by two. The extra
displacement in each of the two directions is any one of the layer shear
rotations which may now be considered as an internal degree of freedom for
the el=mcnt. If these extra displacements and the shear warping angles
(D) are known, all the layer shear rotations are recoverable. Further-
more, the rotations of the normals to the reference surface may be

written as

Xpg = Xg = Xgg (I1.17)

where the subscripts b and s represent bending and shearing respect-
ively. The rotations due to shearing may be expressed in terms of the

shear rotations and layer thicknesses

Xgg = Xgp(PysVay! (11.18)

Hence the rotations xB are also recoversble. A specific version of
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Equation (II.18) will be derived in Section III.1.

. At each interelement node there are 5 + 2(1-1) degrees of freedom
and thus the total number of equations necessary for the overall dis-
cretized structure is the product of this quantity and the total number
of nodes. The additional internal degrees of freedom are not directly
involved in these equations; rather, the element stiffness matrix is
condensed@ with respect to the loads on these internal nodes [62]. This
process, called static condensation, is described in Section II.2.6. For
example, in the Johnson-type quadrilateral discussed above, the total
number of internal degrees of freedom is 23 + 10L: (1) 2 + 2L contri-
buted from each oi the internal nodes 6 to 9; (2) 5 + 2L contributed
from the internal node 5; (3) 2 contributed from each of the nodes 1 to
4, corresponding to the nodal displacements for which continuity is not
enforced. As a result, the size of the stiffness matrix for this element
after condensation would be (12 + 8L) by (12 + 8L).

It should be emphasized that the generalized theory in this chapter
is formulated only in terms of co-ordinates which are coincident with the
lines of principal curvature. Thus, when applying the theory to finite
elements with curved surfaces, the displacements and their d..ivatives
must be taken in the principal directions. For axisymmetric sheils, the
application involves no difficulties since the principal co-ordinates are
the natural choice. Furthermore, arbitrary shells are usually represented
by planar elements [T4 - T6] for which the bending and stretching are un-
coupled. Hence the choice of the "principal" directions of the substitute

structure is open.
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II.1.6. Boundary Conditions

In the previous section, it has been shown that the external nodal

displacements at any node are

Wadg e Xge gy mvg) o k=2 L

Hence, at the boundary ol a structure, kinematic constraints can be
applied by specifying any or all of the above displacements. In prac-
tice, if a displacement quantity is specified to be zero, all the ele-
ments of the corresponding row and column of the overall stiffness
matrix are set to zero with the exception of the rlement on the princi-
pel diagonal, which is set to one, 1In addition, the load corresponding
to the restrained displacement is set to zero. Elastic constraints and
skewed boundaries are also admissable, and their treatment is covered
in the literature ¢n matrix analysis and the finite element method
[56].

For this particular formulation, it is possible to provide for a
support fixed against rotation in iwo ways. Either bending rotation
alone may be prevented or both bending rotation and warping may be con-
strained, The latter is probably a more accurate representation of a

classical "fixed edge,"

although both possibilities have applications.
In either case, rotation of the tangent to the middle surface due to
shearing, Xg » must occur at fixed supports, and this is true for the

above formulation.
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IT.2, S.uiffness Ainalysis of Elements for the Displacement Method

Following is a brief summary of the standard stiffness analysis
[126, 127] which will be applied to three different elemerts later in
this chapter. This derivation is the key step in the direct stiffness
method outlined in Section II.3. Let N =n + m be the total number
of degrees of freedom for & single element, where n and m are the
numbers of external and internal degrees of freedom, respectively.
Also, let a local co=ordinate system for the element be designated by

X .

IT.2.1. Displacement Models

The displacements cver the domain of the element are expressed in

terms of generalized displacements as follows:
{u(x)} = [8(x)]{al} (I1.19)

Here [®(x)] is the matrix of polynomial displacement models and {a}
is the N x 1 vector of generalized displacements. {0} can be con-
sidered to be the amplitudes of the displacement shapes [®(x)] . DNote
that if [®(x)] is expressed directly in terms of the interpolation
polynomials for the particular element, {a} is replaced by the vector
of nodal displacement, {q} . The displacement models are simple, but
relatively complete, fields chosen to satisfy, if possible, the require-
ments of completeness and compatibility (Section I.2.2). 1In addition,
for an arbitrary two-dimensional structure, the models must provide a
stiffness which is invariant with respect to the relative orientation

of the local and global co-ordinate systems.
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1T.2.2. Element Strains

Using the strain-displacement equations and the displacements cf
Equation (II.19), the element strains may be written in terms of the

generalized co-ordinat s.

{e(x)} = [B(x)]{a} (11.70)

In this dissertation, the strain vector {e} shall be comprised »f
the middle surface strains and the changes of curvature as given in
Equations (II.10b anda c¢) and the transverse shears of Equat:on (iI.11).
The total strains may be found from Equation. (II.10a) and may be

written as

Y]
-
ema”

le(x,2)} = [2(g) He(x)} (II.

IT.2.3. Stress-Strain Relations
Employirg submatrices of the type given in Equation (II.12), the
total stresses may be expressed in terms of the totel strains by

{o(x,z)} = [cld&(x,z)} (11.22)

I1.2.L, Abplication of the Principle of Minimum Potential Energy

In the absence of body forces, the totnl potential [128] of an

element is given by

T=U-V=2 f €} (o} av - f CVRCINIE N (11.23)

v a

Here the barred quantities re prescribed and the following definitions

apply:



volume of the element

<
"

erea of reference surface of the element over which stresses

™
[}

necified
{Bu} = vector of loads correspunding to the displacements {u} and

distributed over the surface of the element.
Substituting Equations (71.19 - 22) into (II.23) gives

m = {a}f (% f BTz lcl{z]1(B] avia} - Jf [@]T{iu} da) (II.2k)
v

a

Application of the variational principle {128] to Equation (II.24)

results ir variation of the generalized co-ordinates only to give

§n = {Ga}T ( f [B]T[D][B] av{a} - f [@]T{Eu} da) = 0 (11.25)
v a

where the matrix 1 has veen defined as
Ty .~ .
[p] = o(r) = [2(g) 1 [cilz(z)] (11.26)
The integral of [D] over the thickness of the shell is given by
/2
G} = [Dla ¢ {(11.27)
-h/2

The equilibrium equatious which result fram Equation (II.25) are

{Qa} = [ka]{a} (I1.28)

where
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—

)

[a—
|

d[l[B]T[c][B] av
v

(11.29)
[ 107G e

a

£
]

are the element stiffness and consistent generalized loads respectively.

11.2.5. Transformation to Global Co-ordinates

The nodal displacements in local co-ordinates can be obtained in
terms of the generalized displacezents by evaluating Equation (II.19)
at the nodes of the element.

{q} = |#(node 1)]{al = [A] {a}

Nx1 ®(node 2) NxN Nxl
etc.

This system of equations can be inverted to obtain
{ -1
al = [A7"]{q} (11.30)

Had [®] originally been chosen as interpolation functions, then {a)
and {q} would be synonomous and this step would be unnecessary.
Let {r} be the vector of nodal displacements in global co-ordinates.

Then the relation between {q} and {r} is given by
{q} = [THr} (11.31)

vwhere the matrix [T] is a simple transfcrmation matrix relating the
two co-ordinate systems.

Equations (II.30) and (II.31) may be combined to give

fa} = (a~1[1]{r} = [T]{r} (11.32)
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Using the transformation matrix of Equatiocn (II.32), it is apparent from
Equation (II.24) that the element stiffness and consistent load vector

in global co-ordinates are

(k]

"3 1]

(11.33)
{r}

CIRCW

II.2.6. Static Condensation

The equilibrium equations for the element in global co-ordinates

{r} = [x] {r}

Nxl  NaN Nxl (11.34)

can be partitioned to distinguish the external and internal degrees of

freedom as follows:

v

R k. |k r
1 _l}_T--lg 1 (11.35a)
Ry IR | B
nxl nm nxm nxl
mx1l mxn mxm mxl
Equations (II.35a) can also be written
(R} = [, 1y} + [k,)ir,}
(II.35b)

(R} = Ty Jry} + [y, lry)

by solving the second of these equations for {r2}
=1 1
{ry} = [ky,] Ry} - [y, 17 [y 1y}

and by substituting this result into the first of Equations (II.35b),

there is obtaine” upon regrouping
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{r} = [(xMr,} = [k] {r}
el =TT n§l (11.36a)
where *
-1
{r} = {Rl} - [k12][k22] {Rz}
(I1.36b)

(k] = [k, ] - [k, )ik, ik, ]

21

In practice, the condensation is carried out by a symmetric backward
Gaussian elimination process [58]. The matrices of Equations (II.36)
are in suitable form for employment of the direct stiffness assembly

procedure (See Section II.3 below).

I1.2.7T Element Stress Resultants

Stress resultants of the type given in Equations (II.15) can be
expressed in terms of the nodal displacements of the element. By using

Equations (II.20-22) and (II.32), the element stresses may be‘written
{o(x,2)} = [clz(g)][B(x)}[T]{r} (11.37)

Moreover, the complete set of Equaticns (II.15) may be written in

aatrix form as

h/2
{s(x)} =f [2(2)1 T {o(x,0) Yt . (11.38)
-h/2

where {S} is the vector of all layer stress resultants. Upon combining
Equations (I1.37) and (II.38) and using the definition given by Equation
(II127), the element stress resultants at any location within the element

are _ iven by

{s(x)} = [G][B][E]{r} . (11.39)
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It is a simple matter to assemble the total stress resultants according
to Equations (II.16) once {S} has been determined at a particular point

on the reference surface.
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I1.3. The Direct Stiffness Method

The direct stiffness method is the most efficient and systematic
approach to the stiffness analysis of structures [63]. It has become
the basic technique of the finite element metho® nd is described in
se.eral of the References, e.g., [126, 127]. The following sequence
of steps summarizes the direct stiffness method as applied to the

displacement method of solution:

1. Discretization of the structure.

2. Discretization of the displacements and selection of displace-
ment models.

3. Derivation of the element stiffnesses.

L. Assembly of the element stiffnesses into the stiffness of the
complete structure.

S. Solution for the displacement amplitudes.

6. Com_utation of the stress resultants.

Steps 2, 3, and 6 are discussed in Section II.2 above and the remaining
steps are briefly described below.

When discretizing the structure, there are certain natural locations
for interelement nodes. Line loads and discontinuities in geometric or
material properties are examples of such locations. Beyond this,.consid—
erable judgment must be exercized in selecting a nodal mesh. In general,
a finer grid is required wh:re there are steeper gradieﬁts of behavior.
For two-dimensional structures, attention should also be devoted to choos-
ing a systematic mesh pattern so that the final equations can be ordered
te g7 » a minimum band width.

LA ement stiffness has been derived and transformed to a

12 . system (global co-ordinates), the interelement
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compatibility conditions can be applied to assemble the structure stiff-
ness. The element nodes can be identified with nodes of the overall
structure. The element influence coefficients are merely added to their
proper locations in the ov2rall stiffness, using the cross-identifica-
tion of nodes. The element consistent loads are similarly assembled
into the structure load vector. Another way of interpreting the direct
stiffness assembly process is to consider the variational theorem of
Equation (II.25) as being applied to the entire structure. Because the
displacement {ields are separately assumed over each element, the
integral over the structure can be taken as the sum of the integrals
over the elements. Hence, the n x n element stiffness can be consid-
ered a compact form of an M x M contr.bution to the structure stiff-
ness, where M 1is the total number of degrees of freedom of the
structure.

The equilibrium equations for the overall structure are

{v} _ [K] {v}
Mxl = MxM Mxl (II.Loa)
and may be partitioned according to the structure hodes as
Vl Kll K12 .« o . vy
Vol |¥a K22 V2
- (1I.k0b)
; Jt.

If all of the equations of type (II.36a) are partitioned on the same
basis as (II.40b), then the compatibility equations for the p-th node

are given by

=@ - @ - (11.51)
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Here the subscript indicates the node; the superscript, the el.ment;
and there are E elements adjacent to the p-th node. The assembly

process is then given by

)
{vi= 7] {8}
p i=p -~ P
N
[k 1= 1 [kl° (I1.42)

where F 1is 2 for two-~dimensional meshes and 1 for one-dimensional
grids. The final step in the assembly process is to modify the stru:z-
ture equilibrium equations for the geometric boundary condiiions,
i.e., the kinematic constraints.

The resulting stiffness matrix is symmetric and sparse. With the
proper ordering of equations, it is also narrowly banded about the
principal diagonal and thus can be efficiently stored. Provided the
boundary conditions are sufficient to preveat rigid body motion, the
matriz is positive-definite and well-conditioned. 1In practice, only
the upper half of the banded symmetric matrix is stored in the computer,
and a symmctric Gaussian composition is used [60].

(<] = [L](p](L]" (11.43)
where [L] 1is a lower unic triangular matrix of multipliers and [D]
is a diagonal metrix of pivots. Without pivoting, the banded nature
of the stiffness is maintained in the decompositicn and [D][L]T may

be overwritten on the upper band of [K].



When the stress resultants are computed as suggested in Section
II.2.7, some discontinuities in stress occur at the element interfaces.
These arise from (1) the approximation of the true d4isplacements by the
superposition of the simple displacements assumed over each element and
(2) the fact that interelement continuity is not maintained on deforma-
tion gradients. An averaging process is carried out to obtain a single
value for the stress resultants at the nodes. It should be noted that
as the mesh is refined and the solution converges monotonically, these

nodal stress discontinuities decrease in magnitude.



CHAPTER III: STATIC ANALYSIS OF ELASTIC SANDWICH STRUCTURES

ITI.1. Sandwich Beams and Cylindrical Be.:Cing of Sandwich Plates

For the one-dimensional case of beam analysis, the parameters used

in Section II.1 take the following values:

1 2 1

o _ .0 o _ aw _
U T U L WSV, X T X= g s Yo T Vi (111.1)
e =

1k T fxx * Yigk T Yxax

The remaining parameters (62, Gy uz, X, ) vanisk

» Yox » Y12k * Yorx
from the formulation. Furthermore, attention is restricted to three-
layer sandwich beams with facings of equal thickness and composed of
the same material (Figure III.1). Hence the bending and stretching is
uncoupled and only the flexural behavior is considered:
u =0 . (111.2
The thickness of the core layer is talien to be hc and thet of
the facings hf . The *otal thickness is h and the distance between
the middle surfaces of the facings is designated d . The reference

surface is selected to be identical with the core middle surface and a

normzlized co-ordinate is defined
E = (x - xi)/(xj - xi) = (x - xi)/l (111.3)

where the subscripts identify the i-th and jJ-th nodes of the beam ele-
ment of length £ (Figure III.1l). In all cases, the width of the
beam section is taken to be unity. Sign conventions are indicated in

Figures Ii1I.1 and III.2,

L5
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III.1.1. ©5Slope "ue to Transverse Shear
In equations (II.17) and (II.18) it was indicated that se;..-zte

components of the slope, ¥ , could be Identif..d. The espression for
the contribution due to shear is derived i this section. Figure TTI.2
shows a different;al elemert deforming under pure shearing of the core
and the facings. With this type of loading, there is no net extensicn
of the luyers sc the tangential Jdisplacement of each middle surface is
zero., The tangential displacement of .he interface must be the same
when computed with reference to t.e middle surface cf either the face
or core. For the case of constant shear carried entirely by the core,

this conditien gives

u(z = hc/z) = (Yc - Xsc)hc/2 = Xse hf/o

and fcr the case of face shearing it gives

u(z = -hc/2) = (yf - xsf)hf/2 = Xge h /2

1&

[iiivg the two equations and using 4 = hc + 11, , one obtains
4

Y T X

= frr1.h
S sC * Xsf Ychc/d + thf/d (TIL.L)

X and X ;¢ are defined in Figure TII.3.

sc
III.1.2. Stress-Strain Equations

The counstitut’ve matrix is diagor~l for ti.2 beams and the stross-

strain equations are given by
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dx
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o B 0 0] 0 71 ,e
xc o] xc
T 0 K G 0 0 Y
xzc ce xzc
= (I1I.5a)
oxf 0 0 Ef o exf
szf 0 0 0 KI‘GJ‘:‘-J szf

To modify this for the cylindrical bending of plates, the lateral con-

straint is taken into account to give

2 1
B -

xc Ec /(1 v, ) O 4] 0 €re

T 0 K G 0 0 Y

Xzce cec xze

= 2 (III.5p)

oxf 2 0 Ef/(l - vf) 0 exf
szf - 0 0 0 Kfo— szf

As usual, there is a complete analogy between the two problems.

III.1.3. Stiffness Matrix for Beam Elements

The beam element stiffness matrix is derived in this section follow-
ing the procedures outlined in Section II.2, A cubic transverse displace-
ment field and a linear variation of shear rotation are assumed. Moreover,
interpolation functions are used in order to express the displacement
models directly in terms of the nodal displacements. Hence Equation

(II1.19) may be written

{u(g)} = [e(8) {a} , 0<E<1 (11.19)

Here the vectors are chosen as

{u}t

}T

SV XY, Vg
(I1I1.6)

{q < u(0) ; u(l) >

The matrix [®(E)] is given In Appendix A.1.1.
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The kinemaiic assumptions of Section II1.1.1 as applied to the beam

u = -zc(x - yc)
h h
t,b _ d -‘e - f
W s mnX ) 2 RN B (111.7)
w = wt = Wb =W
c f Tf

where the superscripts t+ and b indicate the top and bottom facings
respectively. From Equations (II.9) it is then clear that the strain

components of Equation (II.10) ar: given by

xf
(111.8)
= _ X, %
Kxc ax + dxc
t,b _ dy , d
¢ = " a&x T E%f

By applying Equations (III.8) to Equations (II.19) and (III.6), the

strains may be expressed in terms of the nodal displacements,
{e(®)} = [B(E)Hq} (11.20)
When the strain-component vector is defined

{E}T =<K Ot t t Ob b b

>
b do szc exf Kxf szf exf Kxf szf

then the metrix B is as given in Appendix A.1l. ©Notc that
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Also given in Appendix A.l are the matrices (2] , [C] and [F] from

Equations (II.21), (II.22) aid (II.27), consistent with the definitions

T t t b b
= <
fe} exc szc xf szf €xf szf
{6} =<o t t b b

xc xzc xf xzf "xf xzf

When the principle of minimum potential energy is applied as in
Bquations (II.25-29), it is possible to identify the separate contri-

butions to the element stiffn~ss due to shear, bending and axial force:
N
kg 1= (2] + (0] + [+ [+ ()] (1I1.9)
8x8 ¢ ¢

The integrations have been carried out in closed form and the stiffness
contributions are given in Appendix A.l1. The distinction between the
various components proves useful in obtaining quantitative evaluations
of various approximations; e.g., the effect of neglecting the bending
of the facings about their own middle surfaces can be ascertained by
omitting [k?] (See example in Section III.5.6).

Although the global and local co~ordinate systems are identical,

the stiffness [kq] still must be transformed so that it is expressed

in terms of the following nodal displacements
e} = v, Xs Yo W Xt Yy Yer Yoy >
i i i T3y Ty i L)

These co-ordinates were not the original choice because the use of {q}
as given in Equation (III.6a) allowed a much simpler closed~form inte-
gration for the stiffness matrix. The transformation [T] is quite

simple and can be constructed from the definitions
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Y=Y, - Y,
(II1.10)

X, = X = h.Y,/d - hoy./d

The latter is obtained from Equation (III.4). The matrix is given in

Appendix A.l.

III.1.4. Consistent Load Vector for Uniform Loads

By substituting the matrix [&] from Equation (II.19) into

Equation (II.29) and using the load vector
- ’I= N
{p,}" =<p,(8) 000

where pz(g) = p, 1s a uniform transverse load, the consistent loads

are found to be

p, 2

T 2
{Q} = - <1 e 0O 0 1 - e 0 0>

These can be transformed to correspond to the {r} displacements. The

result is

p L h 2 h %
T 4 2 ¢ L e L
B =7 <12 %w1-2-%s% "8’

III.1.5 Element stiffness for Quadratic Variation of Shear Strain

An element stiffness may be derived for a quadratic variation of

shear strain by utilizing an internal nodal point at £ = %-. If this
node is designated by the subscript o , the interpolation functions

for the shear strains are

Yy = (1 - 3¢ + 252)Yl + ME(L - a)yo + (28 - 1)y (I11.11)

J
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where k = ¢,f . The details of the derivation are the same as for the

linear variation of shear and will not be carried out here. The relevant

matrices are given in Appendix A.2, including the contributions to the

10 x 10 stiffness.
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III.2 Axisymmetric Sandwich Plates

For the cylindrical co-ordinates used to describe this case, the

~arameters in Section II.l take the following forms:

1 2

- - - - (111.1280)
El =r,a = 1 g2 = 9, a, =r

In e'dition, since only axisymmetric loading is considered:
o o o 0
up T U, U, = U, = 0 ,w =w
=y = =
X5 X T3 o Yaxg T Yk
(III.7.2b)

€1k T Erx 2 Cox T fek * Yizk T Yrax

Yog = Yorx = Xp = Yio = ©

Attention is again restricted to three-layered construction symmetric
about the middle surface of the core. As a consequence, the uncoupled

stretching may be neglected in the flexural problem:
w =0 . (111.2)

The geometry and terminology will be completely analogous to that
for the beam (Figure III.1). Here the normelized co-ordinate in “he

radial direction is defined ss

£E=(r - ri)/(rJ - ri) = (r - ri)/l (111.13)

Sign conventions for the stress resultants are indicated in Figure
IIT.4., The slope due to shearing is also the same as for the beam and

the expression is repeated here.

Xg = X "X = Y B /A + yh./d (III.4)
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The limitation of axisymrc2tric loading allows a one-dimensional finite
element representation waich is more complicated than the beam problem

that circumferential stresses and strains are present.

ITI.2.1. ©Stiffness Matrix for Annular Plate Elements

The first step in deriving the stiffness matrix is the selection
of the assumed displacem nt field. A cubic transverse displacement
model (linear curvatures) is again assumed. In terms of generalized

co-ordinates, this field is given by
w(E) = a, + 0, +a &2 + 0 53 0<g<1 (I11.1h)
1 2 3 4 ? -7 - : *

The basic shear strain model is a linear field as follows:

YC(E)
Yf(E)

& + ot
576 (III.15a)

o, + a8£ . 0<Eg<1
7 =52

In addition, a more refined element with respect to shear may be

obtained by using a quuadratic shear strain field

YC(E)
Yf(i)

2
a5 + a6£ + a9£

5 (III.15b)
a7 + aeE + a10€ 0 < 13 <1

The kinematic assumptions applied to the axisymmetric plate are

the same as those for the beam:

u, -zc(x - Yc)

(III.T)

a3
=

't,b - /., Q __9. e
utt = ez X =Y EEX 3T Yo i Ve

However, now there are non-zero strain components in both the radial

and circumferential directions. The components are
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Src = E:6c =0
oo ax, W
r- dr dr
o (v - v,)
"Be r
eot’b=+igx_ic_dY_c_}_1§i£ (1I1.16)
rf -2dr + 2 4dr + 2 4dr ‘
t.,b h h
o't _ 14 <., £
€ TrITpEX-T Y. 3 Ve

Bib_ (X = vy)
or r
These may be applied to the assumed displacement fields in terms of the

generalized co-ordinates by using

The stiffness analysis is a straightforward application of the tech-
niques outlined in Section II.2. The matrices that result are given in
Appendices B.1l and B.2 for the linear and quadratic shear models, respect-
ively. However, the integration to obtain the stiffness matrix is not
carried out in closed form. Rather numerical integration using Gauss's

formula [131] is incorporated into the computer program for the integral
1

(k] = mf (8(£)17C1(B(E)] rag (111.17)
)

Finally, with the selection of the vector {q} = {r} as given in the
Appendices, the global and local ro-ordinates do not differ and the

total transformation matrix is given by [T] = [A-l] .
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I1.5.2. 8Stiffness Matrix for Disc Elements

In the limiting case r, = 0 th2 annular plate elements described
in the previous section and in Appendices B.l and B.2 become discs.
Because the center of the disc occurs on the axis, there are certain
constraints that must be introduced to maintain axial symmetry. From
the outset, concentrated loads at the center of the plate are excluded
in order to avoid the corresponding singularicy. Hence the symmetry
requirements result in the followirg "interns™ boundary conditions"

[84]:
X=Y =7.=0 at r=0 (111.18)

These conditions, in effect, remove three gereralized co-ordinates

and the assumed displacement fields become
_ = - .2 - .3
w(g) = Q, + a5£ + ok

Y, (&)

&7g (III1.19a)

A
=

Yf(E) = Q < g

1
Q
[0¢)
i
o
1A

for linear shear strains and

1\
[]]

V() = 0 + agk (II1.19b)

™y
O
A
[aat
LA
=

Yf(g) = 685 + alO

for quadratic shear strains. The kinematic assumptions and the strain-
displacement equetions for annular elements also aprly to the disc as
long as the new displacement fields are used. In Appendices B.3 and

B.4 the matrices arising from th- stiffness analysis of disc elements
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with linear and quadratic shears are given.. These matrices are derived
in the same dimensional format as those for the annular element so that

they need no special treatment in the assembly procedure.

171.2.3. Consistent Generalized Load Vector

If the distributed loads are assumed to be linearly varying along
the radivs, it is an easy matter to perform the integration to obtain
the generalized loads, {Qa} , ot Equation (II.29). Given the trans-
verse load intensity at the nodes, linearly varying loads may be

expressed using the interpolation equation

= - .20,
D, pzi+~‘;(pzj Pzi) (11I.20

Then the generalized loads are obtained from
1
{Qa} = onl f [@]T{p}(ri + RE)AE . (111.21)
o]

The results of this integration and of the subsequent transformation
to global co-ordinates are given in Appendix B. It should be noted
that, in the discretized representation, load distributions of an
order higher than linear can be approximated by a linear variation

over each individual element.
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ITr.3. A Doubly Curved Axisymmetric Shell Element

Various doubly curved elements and local co-ordinate systems for
axisymmetric shells were studied by Khojasteh-Bakht [84]. Of the
possibilities he considered, he was able to obtain best results from
(1) an element which matched the position, slope and curvature of the
shell meridian at the nodes and (2) a represent:-ion of the element
geometry and displacements in local rectilinear co-ordinates. This
formulation, which Khojasteh-Bakht designated FDR(2), results in an
element which satisfi.s the completeness and compatibility conditions
given in Section I.2.2. t is adopted for use in this paper.

Let the local rectilinear co-ordinate system be & - n and the
displacements in the corresponding directicas bve uy and u, . Choose
the meridional and radial displacements of the shell reference surface
tobe u and w and the radius of meridional curvature to be Rl .
Then ~he geometry shown in Figure III.5 is substituted for that of
an arbitrary rotational shell. The angles are positive as shown in

the figure and the following relation applies
b+y+B=m/2. (III.22)

Note thet & 1is a normslized co-ordinate which takes the values O
and 1 at nodes I and j , respectively. The meridian of the sub-

stitute element is given by

n=E(L-6) (a+a,f +ak’ +8%”) (I17.23a)

where Khojastch-Bakht has shown that the constants are given by
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FIGURE IL.5 DOUBLLY CURVED ELEMENT AFTER
KHOJASTEH [84]
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FIGURE IIL.6 AXISYMMETRIC SANDWICH SHELL GEOMETRY
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8.1 = tan Bi

)
1l

"t
+
tan Bi ni/e

a), = 3(tan B, + tan Bj) - (nj - ni)/2

(111.23Db)
" ]
a, = -(5tan B, + Utan B,) + (n,/2 - n,)
3 i J 3 i
" den [
n = 2 = - 2
ag Rl cos™ B
. an
The parameters in Equations (III.23) are obtained from
Ar=r, -r, JMAz=12_ -2
J 1 J 1
P |
As = {ArT + Az7]2
sin ¢ = Ar/As , cos ¥ = Az/As (I11.24)
sin Bn = cos ¢n cos Y ~ sin ¢r sin ¢ .
n=1,j
cos Bn = sin ¢n cos P + cos 3 sin P

In order to apply a stiffness an3’lysis to this substitute element,

the following additional relationships are needed:

r=r, + 2(Esin ¢ + cos V)

25- - cos B d.—B- = —t i’ - " 2
ds 2 - R, cos n cos B
cos ¢ = cos B (tan B cos v + sin ¥) (111.25)

sin ¢ = cos B (cos ¥ - tan B sin ¢)

cos B =
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The displacement transformation equations are also necessary:

u, cos B + u, sin B

1

e
n

2 (II1.26)

u; sin B - u, cos B

£
[

In the next section, this doubly curved element is applied to arbitrary
rotational sandwich shells. The assumed translational displacement
fields are expressed in terms of the local displacements uy and u,

and the local co-ordinate § .
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I11I.4. Axisymmetric Sandwich Shells

The geometry of the shell reference surface is described in terms

of the following definitions for the parameters in Section II.1l:

g =s,0 =138 =0,0,=r
(III.27a)

R

r/sin ¢

where Rl and ¢ remain unchanged. Onlv axisymmetric loading is

considered; therefore, the following apply:

° - u uO =u. =0 ° .
Uy =d,u=u,=0,w =v
-y 9w u = (III.27b)
Xy = X =5 R, Yix = Yk y
€1k T Ssk ? ok T %ok 0 Yigk T VYsrx

Yo “Yorx = Xp = Yo = O

See Figures III.5, III.6 and II.3 for the geometry and sign conventions.
Like the beam and plate analyses above, only the three-layered case

symmetric about the reference surface is considered in detail here.

III.k.,1. Kinematic Assumptions and Strain-Displacement Equations

The rotation of the shell meridian due to shear remains the same

as for the beam and plate

dw  _ _
Xg = qe® T X 7 X T Y MBS+ yeh,/d (T11.4)

The kinematic assumptions are taken from Section II.1l.1 and modified

in light of Equations (III.27) to obtain
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u,=u- Cc(x - Yc)
h h
t,b _ <} c f
u® = - cf(x - Yf) YSXIT Y135 Yy (ITI.28)
-wt=wb=w
Ve " ¥ T ¥y

Furthermore, the strain components of Equations (II.10) for the

present notation and loading case are given by:

O - du_ v

sc ds Rl

o _ 1 .

€0c = 7 (u cos ¢ - w sin ¢)
= _ X, 4

Kse = " T & °©

c, =-S9808 (v .y

Oc r c
(II1.29)

t,b h, ay
o _dw w o dae P Yol Zfe

sf ds Rl - 2d4s + 2 ds + 2 ds

t,b h h

° =1 . cos a e °f
€ =3 (uwcos ¢ - wsin ¢) + = = X =5 Y, -5 Ve
Kt’b=_g'-2<+.(.ik

st ds ds

tsb _ cos ¢
Kop T~ T 1 (x - Yf)

However, in order to employ the substitute element described in
Section III.3, the strains must be expressed in terms of the displace-
ments in local rectilinear co-ordinates. By substituting the trans-

formation of Equations (III.26) into Equations (III.29) and by using
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the relationships given in Equations (III.25), one obtains

2 du du
cos B 1 2
x = __—z__.(ag—-tan B - —EE)

© = cos2 B Ful + du2 tan B
sc ) PE ag
e = i-(u sin ¥ + u, cos Y)
Oc r 1 2
2
3 du du
K = - c032 B [agL "coszB (1 - tan2 R) + é tan B +
sC [} dg
du d2u dy
_2 _u 2 2], cos B "'c _
+ 2 3z n" tan B cos” B - 5 ]+ T aE -
ag
- |<(l) + K(2)
sc sc
3 du du
_ L1 Jcos” B 1 _ __21) .
Kgo = = T [ z ( 3 ten B ) - Y, cos % (sin ¢ +
_ (1) (2)
+ cos P tan B)-—Kec + Koo
oo L8, (D) _cosgle e, Je T
sf ~ “sc -2 s¢ + & 2 a4 2 df
t,b h h
o _ o .4 (1) cosB |e £ .
€or € ¥ 2% ¥ v (Z,Yc+2 Yf) (sin § + cos ¥ tan 8)

sf scC 2 dg
(BB o bt oS B b cos ¢ tan B)
er Oc £t r

where terms with the superscript 1 involve only the terms with derivatives

of uy and u, and those with superscript 2 involve only the Yc terms.
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III.L.2. Stiffness Matrix for Fructrum Elements

For a linear variatiog of shear strain, the assumed local displace-

ments in the rectilinear co-ordinate system are

Uy =y tagt
- 2 3
u2 = a3 + ahE + aSE + a6£
(111.31a)
Yo = 0p ¥ agé
Yf=a9+a10£ 0<g<l

Only the last two equations change for the quadratic variaticn of shear

strain

_ 2
Yc = uY + a8£ + allE

_ 2 (III.31b)
Yp = O +0g8 + oot

The stiffness analysis follows directly from Equations (IIT.30) and
(II1.31). The resulting matrices for the linear and quadratic shear
strain models are given in Appendices C.1 and C.2 respectively. Oince

the integrals for the stiffness matrix and generalized loads,

1
(k) = 2w [ (1%em) iy e
o}

a cos

(111.32)
1
(q,) = ot f (0175,) 2l ae
o

cannot be readily solved in closed form, numerical integration is nec-
essary to evaluute these quantities. Gauss's formula [131] is used in

this case, just as for the plate elements.
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ITI.4.3. Stiffness Matrix for Cap Elements

The case in which r. = 0 1is analogous to the disc specialization
for the plate elements (Section III.2.2). A cap element is shown in

Figure III.7. The internal boundary conditions in this case are

uo= X =Y Y, T 0 at r=0 (I11.33)

where the case of a concentrated load at the apex has been ex: uded.
The first two of the parameters can be evmressed in terms of the local

displacements and co-ordinates as follows:

u, =y sin ¥ + u, cos 1]
> tau au (I11.34)
_cos_ B 2
X="g |&® WP

Hence to be consistent, the assumed displacement fields must tske the

form [84]

u = - &5 cos Y + &65

=3
1]

&5 sin ¥ + &6 tan B.E + &752 + &853
(II1.35.a)

a9£

<
0
n

Yp = G0k C<gcl

for iinear shear strain. For quadratic shear strain, the last two of

the equations become

Y, = &95 I 4
(III.35b)
- - 2
Yp = Qb + 0k
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FIGURE TIL.7 — CAP ELEMENT AFTER KHOJASTEH [84]
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The matrices for the cap element for linear and quadratic shear are

given in Appendices C.3 and C.h respectively.

III.bk.4, Choice of Global Co-Ordinates for the Shcll

There are at least two possible global co-ordinate systems in which
to express the disﬁlacements ol the axisymmetric shell. These are cur-
vilinear surface co-ordinates (s, 8 , ¢) and cylindrical co-ordinates
(r , 08, 2z). In shell theory, the former co-ordinate system is usually
favored. However, it is possible to apply the finite element method to
shells with discontinuities of meridional slope. At the locations of
such discontinuities, the "radial" and "meridional' directions are no
longer uniquely defined. Hence it is not possible to use surface
co-ordinates in the assembly process for these shells. In Appendix C,
transformation matrices [T] are given for both curvilinear and cylin-
drical global co-ordinate systems. The proper transformst-on is selected

according to the nature of the shell meridian.
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IT1.5. Examples of Static Analysis

The above finite eleme. formulation has been applied to various
sandwich beam, plate and shell problems and the results compared to
solutions from other methods and sandwich theories. A sampling of these
problems is presented in this section to demonstrate the efficacy of tue
method. In general, both the displacement and stress resultants from
the finite element method compare favorably to corresponding quantities
obtained by established theories. Among the references from which
theories were adapted in order to verify the finite element solutions
were Yu [32], Plantema [12], March [120], Reissner [16], Kao [53] and

Rossettrs [52].

ITT.5.1. End-loaded Cantilever Beam

A cantilever sandwich heam of unit width with a unit load at the
free end illustrstes the effect of a constraint on the warping. The

dimensions and properties are selected as follows:

h, = 0.5" , h 0.04" , h = 0,58"

f

= 107 e
Ef = 10" psi , Gf

L o
Ec =2 x 10 psi, Gc =10 psi , Ko = 1

L x 10 psi , K, =1

span L = 10" , load P = 1.0 1b.

Evenly spaced meshes of 5 and 10 elements as well as uneven meshes are
used for both linear shear strain (L elements) and quadratic shear strain
(Q elements).

The displacement solution for 5-L elements is shown in Figure III.8;
the displacements from a $-qQ analysis fall sbout midway between the 5-L

result and the solucvion cf Refe " +j. For all meshes snd elements

used, the overall stress res .- : . .: correct to about five significant
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figures, so these results are not shown graphically. Of interest, how-
ever, is the distribution of shear Iforce between the faciugs and core.
The fraction of the shear assumed by the core is shown in Figure III.9.
The theory from Secuion 1.2 of Reference [12] does not take into account
either the warping behavior or the bending stiffness of the facings; it
assumes that all shear is taken by the core. The refinement to take
into account the restraint on warping and the consequent flexure of the
facings about their own middle surfaces is given in Section 1.3 of that
Reference. This formulation is due to van der Neut. Finally, Yu's
theory [32] considers both the warping and the shearing of the facings
and thus gives the distribution of shear among the various layers.

Figure II1.9 demonstrates that with & proper mesh refinement, the
finite element method gives an adequate representation of this‘phenomenon.
Moreover, the quadratic shear-strain elements enable a satisfactory rep-
resentation with fewer elements. The constraint against warping causes
most cof the shear to be carried by the facings. The approximate mechan-
ism og this redistribution is shown in Figures III1.10b and IIT.10c. In
these figure:s, the shear force carried by each layer is the area under
the stress diagram.

Failures have been found to occur in the facings near fixed supports
of saerospace sandwich structures. For this reason, the facing layers
are usually doubled in thickness in these regions. The above results
give an insight into the shear redistribution which necessitates the
use of such doubler plates. In fact, the finite element method is
suited for design of doubler plates since the computer program is read-
ily modified to account for elements with differing face thicknesses.
Hence it is possible to include these reinforcing leyers in the analysis.

As an alternative, it is possible to assume that doubler plates
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efiectively create a section at their cut-off point which is very stiff
with respect to bending rotation, but which is free to warp. Hence one
could assume that the boundary of the structure occurs at the cut-off
puvint of the plates and gould apply boundary conditicns that prevent

bending rotation but not warping.
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(a) NAVIER - KIRCHHOFF THEORY

]
y(z) T(z)

(b) PRESENT APPROXIMATE THEORY - SECTION FREE TO WARP

|

Y(Z )=Xs T(z)

(c) PRESENT APPROXIMATE THEORY - UNWARPED SECTION

FIGURE IIL.I0 APPROXIMATE SHEAR STRAIN AND STRESS
DISTRIBUTIONS ( G << G¢)
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II1.5.2 Uniformly Loaded Clamped Circular Plate
A circular plate with a relatively large ratio of the thickness
to the radius is chosen so that the effect of shearing on the deflec-
tions is substantial. When the dimensions and properties of the plate

are taken to be

- "
h, = 0.75" , h,
107 psi , v, = 0.3, G, =3.85 x 10% psi , k=1
PS1 5 Ve T Ue2 0 Fp T 2 Psi s By

-2.6x10hpsi,\)c=0.3,G

= 0,025" , h = 0.8"

(5]
]

L .
o 10 psi , Ko = 1

txy
|

radius a = 5" , load p, = 1.0 nsi

the shear flexibilit, accounts for about 85% of the center deflection.
The solution used for a comparison is a superposition of shear
deflections after Plantema [12] and bending deflections after Timo-
shenko [132]. This solution does not take into account prevention of
warping at the fixed circumference.

Finite element results are obtained using even meshes of 5, 10,
and 20 elements with both linear (L) and quadratic (Q) shear models,
Each representation is solved using the two possible fixed-edge boundary
conditions, i.e., with warping prevented (U) and with warping allowed
(W). In all cases, the shear stress resultants are correct to nine
significant figures, so they are not shown graphically. This accuracy
is to be expected since the true shear distribution is linear and thus
can be represented exactly by either shear model. The bending moments
do not differ significantly for the two representations of the boundary
conditions or for tiie two shear models. However, there is some differ-
ence in the deflections for the various cases. When warping is preven-
ted, the Q elements converge more rapidly to a final value than do the

L elements. Figure III.1l shows that this value is within about 2% of
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the deflections for the unwarped case. Thus linear-shear elements with
boundary conditions that permit warping are probably sufficient to
obtain the gross behavior. However, if one wishes to consider the dis-
tribution of the shear between core and facings, one must include the
restraint on warping. In this case, the refined Q elements give
more rapid convergence for displacements and shears (see Figures III.9
and III.11).

The radial moments for the clamped plate are shown in Figure III.12.
Results of about the same quality, or slightly better, are obtained for

the circumferential moments.
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1II.5.3. Hemispherical Shell Under Membrane Load

In order to check the effectiveness of the basic element and of
the computer program for shells, the membrane states of both cylindrical
and spherical shells have been investigeted, Generally, the results are
satisfactory in that both deflections and stress resultants agree with
theoretical values. A typical example is presented here, The sandwich

hemisphere has the following properties:

= ” = " -
h, = 0.5" , h, = 0.0k

E_= 107 psi W= 0.3, G = 3.85 x 10" psi , k,

2.6 x 10h psi , v, = 0.3 ,6, = 10L psi , Kq

1.0

1.0

=
]

radius a = 100" , load P, = - 1.0 psi

Three- and nine-element representations are used with both linear
shear and quadratic shear. Results are essentially the same for the
two shear-strain models, so only the solution using the less refined
model is presented here.

When rol.er supports that restrict only the meridional displace-

ments at the free edges are used, the theoretical solution [132, 133]

is given by

p.a
-— - Z -
w=(1 pvi Eriﬁjéff. ,u=0

= - 2 = = =
N =Ny=--5,M =M =0,0Q =0
(Bh) o = B, + 2Eh,

Substitutiné.the proper values, one obtains

=
n

Ng = 50 1b./in.

- 0.,00L4305"

1
n



£0
The finite element solution for three elements is shown in Figure III.13.
It is seen that the results agree very closely with the theoretical
answers. The nine-element solution is even better, and is nct shown since

it does not differ significantly from the exact solution.



81

(SLNIN3T3 334HL) QvOT INVHBWIN Y¥3ANN 113HS TVOINIHASINGH €T J¥Notd

£0000

11000

S1000

86’6y | €2008 00 20€0 06
10000 | 22000 | L0000 | v.66v | BL66% €90 £OEH'0 09
L0000 | 02000 | 80000 I866Y | L86%6Y 90~ | €OEpO o
81000 81000 00 €666 €666V 00 90§40 o

QO AW usa fo | usadN o usgn N[ u0ix e | uorxm-| P




82

II1.5.%. Edge-Loaded Cylindrical Shell

A sandwich cylinder with the following properties is examined next:
h =0.5" , h.=0.0" , n=0.,58"
c

E, = 107 psi , v

£

=0.3,G = 10" psi , k=1

b3

radius a = 20"

c

end shear = 1.0 1lb./in. , end moment = 1.0 in-1b./in.

The core bending and extensior and the face shearing are neglected by

taking

E =0 ,G, =100 psi , Ke =1

These effects have been omitted in order to compare the results to
Reissner's solution for a semi-infinite cylinder [16].

In spproximating a semi-infinite cylinder by a finite one, two
different types of boundary conditions at the unlcaded edge are possible.
Constraint on both meridional translation and bending rotation at this
edge provides a better approximation than constraint on meridional trans-
lation alone. The cylinder is represented by even meshes of 10 and 20
elements with element lengths of one ir'h and one-half inch. Linear
shear-strain elements are used. Results are shown in Figures III.1lh
through III.17. It is seen that the total length of the finite element
representation is an important consideration. Despite a fine mesh, the
representation using 1C one-half inch elements for a total length-radius
ratio of 1/bis inadequate. Satisfactory results are obtained with 10

one-inch elements and the other two meshes provide further refinement.
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III.5.5. Shallow Spherical Cap with Partial Distributed Loading

The final shell problem presented here is a simply supported
shallow stherical cap subject to distributed loading over a portion of
its surface. The closed-form solution for this problem in terms of
Thomson functions has been given by Rossettos [52]. He neglects the
shearing of the facings and the bending and extension of the core, so

the following properties are selected:

hc = 0.95" , hf = 0.,025" , h = 1"

S _ 20 R =
Ef =10 psi , Vo = 6.3, Gf = 10" psi , Ke 1
- = 102 nei =

Ec =0, Gc = 107 psi s K, = 1

radius a = 20" , supported edge at ¢ = 15°

A uniform load of 1 psi is applied in the axial direction over that
portion of the surface given by 0 < ¢ < 3° .

The cap is analyzed using 5 and 10 linear-shear elements. Deflec-
tion results are presented in Figures III1.18 and III.19, and stress
resultants are plotted in Figures III1.20 to III.22. In general, satis-
factory results are obtained from the 5-element representation. The
small difference between the 5- and 10-element results indicates that

the finite element solution has effectively converged.
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I11.5.6. Effect of Various Contributions tc Beam Stiffness Matrix

Various approximations are possible in analyzing sandwich struc-
tures. Any one or combinations of the following may be neglected: (1)
shearing of the facings, (2) bending of the facirys about their own
middle surface, (3) bending of the core about its middle surrace and
stretcring of the core, and (4) shearing of the core. Generally, the
stretching of the facings is not neglected. In addition, approximation
(L) would not be velid for sandwich construction with the typical
properties used in the preceding examples. However, since the present
theory places no restriction on the ratios of layer thicknesses and
properties, the approximation may be applied to other configurations.
Thz effect of each of these approximations can be evaluated with the
finite element method by choosing an appropriate value of the modulus
when computing a contri ution to the stiffness matrix. For approxima-
tions (1) and (4) the shear modulus of the corresponding layer is set
to a very large value ie.g., 10°° psi) and for approximations (2) and
(3) the Young's modulus of the proper layers is set to zero. The
resulting sclutions are compared to the case for which none of uiae
effects in question are neglectad.

This process is now applied to a simply supported beam subject to
a uniformly distributed load and represented by ten linear-¢hear ele-
ments. The basic beam has a unit width and depth, a face modulus of
7

Ef = 10

assumed that the shear stress correction factors are unity. Various

psi and a Pciczon ratio of 1/3 for both face and core. It is

values of the following ratios are selected in order to vary the para-

wcters that affect the solution:
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h_/h

H
[

h ™ “f'e
rL = h/L
rg = Gf/Gc = Ef/Ec

where L is the span length and the other parameters have been defined
rreviously. A set of curves for fixed values of Ty and T and a
variation of rg is shown in Figure III.23. The ordinates, which are
percent errors, are based upon the average value of the ratic of the
displacements for the approximate and "exact" cases. Families of such
curves could be generated if desired. Koch [30] has already published
several such curves for beams and plates using certain simplifying
assumptions.

Although the errors due to approximations for different specific
ccnfigurations (e.g., simply supported beams vs. cantilever) may be
scuewkat differeat, the trend is the same; and some generalizations
may te made from curves for simple structures. For example, in Figure
1I7.23, increasing values of rg correspond to cores which are
increasingly weak with respect to the facings. As the curves indicate,
large errors may be expected from neglecting the bending of a strong
cere or the shearing of the weak core. A further interesting conclusion
s that the bending of the facings about their own middle surface Is
significant for very weak cores, despite the fact that the facings them-
selves sre very thin. This may be explsined by the fact that for high
values cf rg , the bending stiffness of the fecings plays an important
role in csusing the core to aeform in shear. Hence the face bending is
significant because of its effect on another mechanism of the flexural

action.
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I11.5.7. Discussion of Examples

The above results demonstrate the potential of the finite element
method of analysis for sandwich structures. Although no examples are
presented for closed shells which are not shallow, the computer program
is capable of solving them. The reason such examples are not included
is the absence of published solutions with which to compare them. The
main purpose the examples has been to demonstrate that the finite
element ansiycis comverges to known solutions.

Insofar as the warping phenomenon due to shear is approximated,
the finite element results are superior to those from some approximate
sandwich theories which neglect this effect. In particular, the
shearing stiffness of the facings becomes important at fixed supports
where wafping is prevented and at concentrated transverse loads. A
common assumption for sandwich construction is that all the shearing is
taken by the core [12]. Hence the facings are assumed to be infinitely
stiff in shear. However, if the core carries all of the shear at a sec-
tion where warping is prevented, the facings must be considered infin-
itely flexible at such sections. Unless this incornsistenecy is elimina-~
ted by recognizing that the facings must carry a significant portion of
the shear at thesz locations, the resulting deflections will be too
large. This difficulty has been recognized by Plantema [12]. (The
corresponding phenomenon for homogeneous beams is discussed by Timoshenho
[129]). Tne present finite element formulation permits determination of
the distribution of shear between the facings and the core. This is
illustrated by the first two eramples above.

The relative advantages of linear and quadratic shear models are also
illustrated in the examples. For the one-dimensional problems considered

here, the use of quadratic shear introduces two extra equations in the
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static condensation for each element. The advantage of the refinement is
that, where there is a rapid variation of shear, the quadratic shear rep-
resentation will produce satisfactory results with a coarser mesh. On
the other hand, the moments may only vary linearly along the length when
a8 cubic transverse displacement and a quadratic shear strain are used.
Witk this limitation on the variation of the moments, it is perhaps
inconsistent to have a more refined model for the shear because a rela-
tively fine mesh may be needed Lo obtain accurate moments, However,
for structures which cannot warp freely in shear, the variation of the
distribution of shear between core and facings is very rapid near
restrained sections. Indeed, this variation is exponential [12] and is
usually more pronounced than the variation of moment over the same
length. Thus for some problems the refined shear model seems justified.,

The deflection of homogeneous beams including the effect of shear
was studied by using the same properties for facings and core and by
making the facing thickness very small in relation to the core thickness.
Then with the value of Ko = 2/3 , which is appropriate for rectangular
cross-sections, the deflecticns are identical with those given by Timo-
shenko [129].

When the shear is neglected by setting the shear modulus to an
extremely large value, the finite element solutions for homogeneous
structures (same material properties for core and facings) reduce to
the classical solutions. For rotational shells, this means the results
become exactly the same as those obtained by Khojasteh-Bakht's finite
element analysis for elastic problems [84]. For beams and circular
plates, the solutions closely approximate those of elementary theory

{129, 132].



CHAPTER IV: FREE VIBRATION ANALYSIS OF ELASTIC

SANDWICH STRUCTURES

IV.l. Lumped Translational and Rotatory Inertia

The mass of the structure is concentrated at the nodal points so
that the inertial properties can be represented by a diagonal mass
matrix. Felippa [57, 59] has demonstrasted that this lumped mass pro-
cedure provides satisfactory fundamental frequencies and mode shapes
with less computational effort than the consistent (or distributed)
mass approach. For the same number of nodal points, the former method
results in fewer equations for the eigenvalue problem. When meshes
are arranged so there are the same number of eigenproblem equations
for both techniques, Felippa's results for homogeneous plates indi-
cate that the lumped mass approach produces the more accurate fre-
quencies. The consistent mass method is less efficient than the
lumped mass scheme for two main reasons. First, static condensation
(Section "I.2.6) cannot be applied to consistent mass systems.
Second, additional condensation can be carried out for the lumped
mass representation on the external degrees of freedom which do not
correspond to concentrated masses., This process is prescribed in

Section IV.Z2.

Iv.1.1. Arrangement of Lumped Masses

Rotatory inertias has been shown to be a more important factor in
the vibration of sandwich plates [34] than in the dynamics of homogen-
eous plates [72]. The effects of this type of inertia is discussed in
Section IV.3. 1In this section a physical interpretation of the lump-

ing process is given.
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For translational displacements it is sufficient to idealize the
lumped mass as a point on the reference surface (Figure IV.la). How-
ever, for rotatory effects, the distribution of the mass through the
depth of the beam must be maintained. This is esrecially true for
sandwich structures where the outer-mcst layers, the facings, mey be
much denser than the core. .Hence, one can visualize the mass as being
lumped along the material line originally normal to the reference sur-
face, with no concentration of the mass across the depti (Figure
IV.1.b). 1In effect, this is the same as multiplying the mass moment
of inertia of the cross section by the tributary area.

It should be noted that the rotatory inertia is associated with
the rotation of the normal to the reference surface, i.e., Xp - This
displacement is chosen as an external degree of freedom at each node
(Section II.1.5). The lumped fotatory inertia thus corresponds to

this degree of freedom in assembling the equations of motion.

IV.1.2. Determination of Tributary Area

For beams the determination of the tributary area is elementary.
It is merely the product of the width and the length of half of each
of the adjacent elements (Figure IV.l), For rotational shells of arbi-
trary meridian, the calculation is more difficult. A logical proced-
ure would be to divide the area of each element at a circumference
which is equivalent to the centroid of the area. However, the deter-
mination of this centroid would require more information than is
needed to construct the substitute element (Section III.3). Hence the
tributary area for each node is teken as that area of the two adjacent
substitute elements between the node and the points on the meridian

where the local co-ordinates £ are L This representation will be

2 .
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most accurate for shells approaching a cylindrical configuration and
least accurate for very flat shells and circular plates. Nevertheless,
as the mesh is refined, the difference between the:centroid and the
point & = %- diminishes. Therefore, this approximate approach is con-
sistent with the other approximations in geometry that are used for the
finite element method.

The element of area of the shell reference surface is given by
= = £<L)
da = 2nr(g) ds = 2nL vy ag

This is integrated over the appropriate range of { using Gauss' inte-
gration formula simultaneously with the similar numerical integrations
for the element stiffness. Whereas a ten-point integration is used for

the stiffress for 0 < § <1 , five-point summation is employed for each

o=

of the areas 0 < § < %- and <g<l.
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IV.2. rormulation of the Eigenvalue Problem

In the absence of velocity-dependent demping, the equations of

motion in matrix form may be written
MIGF(e) . + [KHw(¢)} = {v(t)} (1v.1)

where {V(t)} are the nodal forces, {v(t)} are the nodal displace-
ments, [M] is the mass matrix and [K] is the stiffness matrix for
the overall structure. Following the usual procedure for free vibra-
tions, the displacements of the unloaded structure are assumed to be

harmonic with frequency

2

{W}céé wt

{0}

{v(t)}
{(¥(¢)}

[}

where {w} is the vector of displacement amplitudes. As a result,

the accelerations are proportional to the displacements
. 2 2¢ 3. 00
{#(t)} = - 0 {vlt)} = - W {w} ¢os wt
and the eigenvalue problem is stated as
[K]{w,} = w?[M]{w, } (1v.2)
i 1 i

However, standard computer subprograms for determining eigenvalues and

eigenvectors Of a symmetric matrix' gre:based-updu.the formulation
X = . .
[,]{xi} ki{xi} (1v.3)

Therefore, the vibration problem of Equation (IV.2) must be reduced to

the standard form (IV.3)
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Felippa [57, 59] advocates a technique which simultaneously trans-
forms the equations to standard form and condenses the degree of the
problem. This method is efficient in that it gives numerically accurate
results and also uses and preserves the banded nature of [K] ., Felip-
pa's approach is adopted here and is now described.

With the lumped mass procedure, the mass matrix is diagonal and is
thus designasted [MJ . Moreover, non-zero elements occur on the diag-
onal only in positions corresponding to degrees of freedom which are
associated with concentrated masses. For the problem under considera-
tion, these degrees of freedom are the translations and, if rotatory
inertia is included, the rotations due to bending. <JCcnversely, there
are no masses associated with the warping. Only the equations that
involve the non-zero elements need be retained in the eigenvalue prob-
lem. If the total nunber of equations is N and the nmrwmber of lumped

masses 1is Nr < N , the following sets of equations are solved

(kKM{f,} ={e,} ,i=1, ..., N (Iv.L)
1 1 r

The stiffness [K] has already been triangularized by the method given
in Section II.3, so the solutions (IV.lL) are efficiently achieved. The
vector {ei} is a unit vector with zercs at all locations except the
one corresponding to the ith lumped mass. As a result, {fi} is the
column of the flexibility matrix

[r] = (k)™
and, specifically, is the column associated with the i‘P lunped-mass
degree of freedom. It is possible to select the Nr elements of each
of the {fi} vectors which correspond only the concentrated masses and
h

thus to construct the N_x N flexibility [F] . In effect, the N

degree eigenvalue problem of Equation (IV.2) has now been reduced to
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the Nrth degree eige.value problem

[FItMI{w,} = =&V, 1=1, veey N (1v.5)
i © 2 i r
i
This equation is readily trans®ormed to standard form (IV.3) by premulti-
1
plying by [M]2 , the diagonal matrix whose elements are the square root

of those of [M] . Hence

[xHx,7 = Ai{xi} ci=1, ., N (1v.3)
where
(x] = tﬁ.]'%‘f‘i"]tm%
{x.} = tmé'{ﬁi} (1v.6)
Ai = l/wi

An advantage of this formulation of the problem is that the smaliest
frequencies “i correspond to che largest eigenvalues %i . Decause
eigenvalue programs generally compute roots to within an absclute tol-
erance, the largest Ai will have the smaliest relative error.* In

the computer progrem, the flexibility matrix [F] is not separately

computed in its entirety. As each column of [F] “is obtained from

*An alternate approach to formulating the reduce .. eirenvalue prchlem
in standard form would be tc perform & static condensation (Section
II1.2.6) on the degrees uf freedom not corresponding to lumped masses.
Then.the reduced problem

= (= e 1
[K]{wi} = wifMJ{wii_%

can be tranciormed by premultiplying by tM] . However, the dis-

advantages of this procedure are that (1) the banded nature of [K]

is destroyed in rearranging .ows and columns for the condernsation and
{2) lowest frequencies correspond to lowest eigenvalues.
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Equations (IV.4), it is modified using Equation (IV.6a) to construct
the co. . ding portion of [Xx] .

Ore. :tue eigenvectors { l} have been found for the standard
form, the complete moue shapes can be recovered using the triangular-

ized stiffness matrix. Inertial loads of the form

1
t7,) = HIE) = W2, ) (1v.7)

are expanded to N x1 by the addition cf zero elements corresponding
to the condensed degrees of freedom. When these are applied to the

structure using
tkHw.} = {p.} (1v.8)
i i

the solution of the equations gives the desired mode shape.
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IV.3. Vibration Modes

Like the dynamic analysis of homogeneous shells afi plates, the
study of the free vibrations of sandwich structures is primarily con-
cerned with the most fiindamental modes of deformation. These modes
correspond to the lowest branches of the frequsncy equation for three-
dimensional theory. However, the relative importance of the various
types of behavior is different for homogeneous and sandwich structures.
In particular, the thickness shearing modes are of lesser importance
for the homogeneous case since they occur at extremely high frequen-
cies in relation to the pure flexural deformaiions. This is not nec-
essar’ly true for sandwiches because they are more flexible in sktear.
Depending upon the nature of the vibration environment and upon the
properties and configuration of the sandwich structure, the thickness-
shear modes may be quite significani.

Thickness-shear deformations are those in which the shearing
across the depth of the structure is predominant. Thus, for the
three-layered construction used in the examples of this dissertation,
the mode is characterized by a tangential displacement of one facing
relative to the other. 1In terms of the displacement parameters of
the finite element method, for thickness-shear behavior the slope
due to bending, xb , and that due to shear, -xs , are of opposite sign
at any location oa the reference surfcce. Because the shearing
deformation is so closely related to the rotation of the structure
cross-sections, it is necessary to include the rotatory inertia.
Otherwise the moude will not appear in the free vibration analysis.

The importance of thickness-shearing modes has been discussed by

Yu [33, 34, 37] and Chu [46]. I+t will be further emphasiwed in the
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examples of Section IV.4 below. However, a brief qualitative review of
the relationship of the various vibration modes is now given. Figures
IV.2 and IV.3 demonstrete this relationship. It should be emphasized
that these two Figures are mer¢.y qualitative sketches to illustrate
the modal behavior. They do not represent results calculated for a
particular structure. Moreover, the use of contiijuous curves for each
mode implies an infinity of possible wave lengths and hence a struc-
ture of infinite length. For a simply supported, finite-length
structure, the wave lengths must be integer fractions of the structure
length. Hence a finite structure would be represented only by points
on the modal curves corresponding to admissible abscissas.

Figure IV.2 shows the two primary modes of a one-dimensional, flat
sandwich structure, i.e., a beam or an axisvmmetric plate. Point A
is known as the "thickness-shear cut-off frequency" or the "simple
thickness-shear mode." It corresrnsnds to an infinite wave length and
thus represents pure shearing deformation. If the ordinate OA is
sufficiently small, the shearing mode becomes significant in analysis
and design. For example, if the points Fl and F2 indicate the two
lowest flexural frequencies, the thickness-shear cut-off becomes the
second lowest natural frequency of the structure.

For the axisymmetric vibrations of a sandwich cylinder, the three
lowest branches of the frequency equation are shown in Figure IV.3.*
Here, point A has the same significance as for the plate. Moreover,

for an isotropic cylinder the simple thickness-shear freqguencies are

the same for the longitudinal and circumferential direction, so some

*
Wilkinson [134] has descrited a similar three-branch theory for
spherical sandwich shells.
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insight is gained for the asymmetric behavior. Point B corresponds
to a pure radial expansion or "breathing" mode. The radial and thick-
ness-shear curves are close together for nearly all sandwich cylind;rs.
In fact, Yu [37) has shown that their relative positions are inter-
changed for sufficiently low ratios of radius to thickness. Since the
radial mode is significant, the determination of the thickness-shear
frequencies is also essential in the dynamic analysis of cylindrical
sandwich structures.

In both Figure IV.2 and Figure IV.3, the point O represents
rigid bedy translation of the structure as a whole, a moticn which is

characterized by a zero natural frequency.
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IV.4, Examples of Free Vibretion Analysis

The finite element analysis has been used to obtain the fundamen-
tal frequencies and mode shapes for several beams, plates, and shells.
Whevre results from other sandwich theories are available for compari-
son, the approximate method provides reasonable agreement for the
iower frequencies computed. In this section, three examples are pre-
sented: & slender béam, a short beam, and a cylindrical shell. Other
configurations, including rotational shells of arbitrary meridian, can
be analyzed by the present finite element method. However, it should
be re-emphasized that the theory only considers the axisymmetric modes

of’ such structures.

IV.Lk.1. Simply Supported Slender Beam

Kimel et al. [43] have reported the results of experiments to
determine the natural frequencies of a long, slender sandwich beam
which is simply supported. They also developed a theory tc predict
this behavic:. The finite element method has been applied to one of
their specimens and the results compared to the z=:periment and theory.

The beam has the following properties:

h, = 0.25 , h, = 0.016 , . = 0.282

10.3 x 101-‘L psi , G

w

3.87 x 10° psi , kK, =1

=
1]

£ £ £
E, = 2.34 x 10" psi , G, = 1.17 x 10* psi , Kk =1
spen, L = 120" , p, = 0.0975 1b./in.> p, = 0.004k2 1b./in.>

The effect of lateral constraint is neglected, i.e., the beam stress-
st & .fors (ITI.5a) are used rather then those for the cylindrical
r2a - ©JIL.5b). Hence V is taken 8s zero in the theories

L43].
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The result of calculations is presented in Table IV,l. The theo-
ries from References [34] and [43], although somewhat different in con-
cept, agree closely in results. The linear-shear finite element
solution matches both theories well. Furthermore, all three theoretic-
al methods provide frequencies within a few percent of the experimental
values, better correlation being obtained for lower frequerncies.

It is apparent that the inclusion of rotatory inertisa ﬁas negli-
gible effect on the flexural frequencies for this problem. This is to
be éxpected on the basis of the relatively small effect of rotatory
inertia on the flexural vibrations of homogeneous plates [T3]. More-
cver, by lumping the masses to produce a diagonal mass matrix, the
inertial effects have been uncoupled. However, the use of lumped rota-
tory inertia does provide estimates to the thickness-shear frequency,
although for the ten- and twenty- element representations in Table IV.1,
the approximations of the thickness-shear cut-off are poor. It is
found that the ratio of beam thickness to element length is an import-
ant factor in the accuracy of the finite element solutions for thick-
ness shear behavior. Since the thickness-shear cut-off occurs at
infinite wave length, it is independent of the span length of the bgam.
Hence it is possible to estimate the simple thickness-shear frequency
by analyzing a simply supported beam of arbitrary length, rrovided
rotatory inertia is included. Figure IV.4 indicates the effect of the
thickness tc¢ . agth ratio on the accuracy of the finite element thick-
ness-shear cut-off. The standard of comparison is Yu's determination
of this frequency [33,34]. The results shown are independent of the
number of elements used. Hence, the finite element analysis can be
used to obtain +the simple thicknéss—shear frequency with a sufficiently

short one-element representation. This quick and =asy calculation
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provides an indication of the necessity for inclading rotatory inertia
in the complete analysis. If the cut-off is high with respect to the

flexural frequencies, rotatory inertia need not be taken into account.
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Iv.4.1 Simply Supported Short Beam

In order to illustrate & structure for which thickness-shearing
modes are important, a short, thick beam is selected with the follow-

ing properties:

h, = 1.0" , h, = 0.05" , h =1"
6

N G _ : -
E. =10 psi, G, = 3.84 x 10" psi , Kp =1
> psi , G, = 1.565 x 105 psi , k =1
3

Ec = 4,26 x 10

span, . = 5.5" , pp = 0.0975 1b./in.” , f. = 0.0469 1b./in.3

The beam is represented by 4, 10, and 20 linear-shear finite elements
both with and without rotatory iaertia; again the results are compared
to the theories of References [34] and [43].

The various solutions are given in Tabla IV.2., The iinite element
results compare favorsbly with the theoretical for both flexural and
thickness-sheair modes. For the various meshes, about 70% of the finite
element flexural frequencies ure in good cgreement with the frequency
equation roots. For the higher mode, only about 45% agree with the
theoretical solution. That the approximate method will be more accu-
rate for the lower modal branch is not surprising; the finite element
displacement models are better able to represent less complex modes of
deformation. It should be emphasized that the element mesh is extreme-
ly £ sr this particular example. In normal application with a
1€5s refined mesh, a smaller proportion of the frequencies for eech

mode would be accurate to a given tolerance.
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IV.4.3. Simply Supported Cylindrical Shell

The one type of shell for which solutions for natural frequencies
are readily available is the cylinder. Yu [37] has derived a three-
branched frequency equation for an infinite cylinder in an extension
of his theory for .andwich plates [32, 24]., This equation is also
applicable to a simply supported shell of finite length. A cylinder

with the follcwing properties is now analyzed.

hc =0,5" , h, = 0.025" , h = 0.55"

T s 6 .
Ef =10 psi, Vy = 0.3, Gf = 3.85 x 10" psi , Ko = 1
L Lo
E = 2.6 x 10" psi , v,=0.3,G =10 psi, K =1
3 3

0.005 1b./in.

1

P =0.11b./in." , p_

radius, a = 20" , span, L = 10"

As in the preceding examples, thgge properties are typical of sandwich
constructioen.

The natural frequencies computed by both methods are presented in
Table IV.3. Rotatory inertia is included in all cases and quadratic-
shear elements are used. Many more frequencies than would be of prac-
tical interest are shown in the table in order to evaluate better the
overall effectiveness of the finite element approach. It is note-
worthy that the lowest frequencies of each of the three modes are
approximated regardless of the number of elements used. The number of
frequencies given by the finite element method for each mode depends on
the number of degrees of freedom available of the type that are nec-
essary to characterize the particular mode.

For shell structures there is usually more than one branch of the

frequency equation that is of engineering importance., <Careful study
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of the finite element mode shapes must be undertaken in order to iden-
tify the frequencies with the appropriate branch. This is especially
true in preliminary analyses wherein the frequencies have not yet
converged to a predictable pattern.

In the present example, simple supports which preclude transla-
tion in any direction are used. Hence the breathing mode or funda-
mental radial expansion mode is prevented. However, the example
has been recomputed with supports that restrain only longitudinal
displacements in order to obtain an estimate of the cut-off frequency
of this radial mode. Yu's solution [37] for this frequency is 8520
sadians/second. The finite element approximations for five, t=n, and

twenty elements are 8360, 8500 and 8520 radians/second, respectively.
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TABLE IV.3--NATURAL FREQUENCIES OF A SIMPLY SUPPORTED

SANDWICH CYLINDER (RAD./SEC.)

yu [34] Finite Element Method
MODE TYPE
Eq. 29 5 elems. 10 elems. 20 elems.
1 L1 87L0 90L0 9080 9080
2 L2 11900 11900 12100 12200
3 L3 16300 15500 16700 16800
I LY 21000 18000 21500 21900
5 L5 25900 26000 27000
6 L6 30800 30000 32300
7 LT 35700 33400 37500
8 L8 LoT00 35900 L2700
9 L9 45700 37400 47700
10 110 50700 52700
11 R1 53600 8260 53300 53500
12 L11 55700 57400
13 L12 60700 61900
14 L13 65800 66000
15 TSCO 69800 71500 72800 73100
16 L1k 70800 69800
17 L15 75800 73100
18 L16 80800 75900
19 L17 85900 78100
20 118 90900 79700
21 TS1 92500 91200 94100 94900
22 119 95900 80700
23 L20 101000
2L L21 106000
25 R2 107000 99800 105000 107000
32 TS2 140000 128000 138000 141000
37 R3 161000 137000 155000 159000
L7 TS3 195000 187000 194000
RL 214000 200000 211000
TSh 252000 235000 249000
RS 268000 241000 261000
TS5 311000 278000 303000
R6 321000 275000 309000
TST 370000 356000
RT 375000 356000

L = Longitudinal, R = Radial, TS = Thickness Shear



CHAPTER V: DAMPING BY THE INCLUSION OF VISCOELASTIC LAYERS

V.l. The Complex Modulus Representation

For oscillatory displacements in linear viscoelasticity, the
stresses and strains may be related by a complex modulus [135, 136].
This representation of constitutive theory is adopted for the pre-
sent damping studies. Most of the material in this chapter is there-
fore formulated in complex algebra. Throughout the chapter, the
superscript * indicates a complex quantity and the subscripts 1 and
2 designate the real and imaginary parts of a complex quantity,
respectively.

Let a volume of viscoelastic material small enough to neglect
spatial variations of stress be subjected to a sinusoidally oscillet-

ing stress frequency w :

* iwt) (v.1a)

0ij = Re(cij e

After a time sufficiently long for the effect of initial conditions to

be negligible, the steady-state strain response is

iJ

* 1 .
€. el‘*’t) (V.1b)

This formulation presumes that strains are small so that non-linear
* *
effects are absent. Then if € corresponding to O© can be con-
sidered to represent either a deviatoric component or the dilation,
LR |

the ratio 0 /e is the "complex modulus"

* * *

E (w) =0 /e (v.2a)

and its reciprocal is the "complex compliance"

120
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Jw =¢/0 . (V.2b)

These quantities are related by integral transforms to the familiar
relaxation modulus E(t) and creep compliance J(t) functions used in
quasi-static viscoelasticity.* It should be noted that E is used &s a
generalized symbol in this section. It can be considered to represent
any of the usual moduli (Young's, shear, bulk), depending upon the

nature of the "test" in Equations (V.1) and (V.2).

The complex modulus may be written

*

E = El + iE2

where i is the square root of -1, El is the modulus of strain which
is in phase with the stress and E2 is the modulus of strain which is
90° out of phase with the stress. Hence, El can be associated with an
elastic phenomenon in which energy is stored in a recoverable form and
is called the "storage modulus"; conversely, E, is associated with
viscous behavior in which energy is dissipated and is called the "loss
modulus.”" It is convenient to visualize the stress and strain as a
pari of vectors rotating at frequency w about the origin of the com-
plex plane (Figure V.1). The stresses and strains of Equations (V.1)
are the projections of these vectors onto the real axis. Because of
the viscous effects, the cyclic strain vector lags behind the cyclie

stress vector by an angle 6 during the steady state vibration. This

angle is between 0° and 90o and is given by

*
In "quasi-static" viscoelasticity, inertial effects are neglected. The

relaxation modulus is obtained from a test at constant strain:
E(t) = o(t)/e_ . Conversely, the creep compliance is ascertained from a
constant-stress test: J(t) = s(t)/o0 .
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tan 6 = E2/El .

tan 6 is called the "loss tangent" or "loss factor" of the material
since it is a measure of the proportion of energy dissipated in a
cycle,

The complex modulus is a function of both temperature and gre—
quency. The nature of this dependence is discussed further in Section
V.3. It is assumed in this dissertation that all problems are iso-
thermal; i.e., there are no external thermal effects and the heat
generated per unit volume in the damping process either is sufficient-
ly small or is dissipated quickly enough so as not to affect appreci-
ably the material properties. This is a customary approximation in
the analysis of structural damping [86, 87]. Often, it is also
assumed that the complex material properties are independent of
frequency [(47]. This is a reasonable assumption for many cases,
especially in view of the ccntinual development of new damping materi-
als with favorable damping characteristics over a wide frequency range
[97]. However, in Section V.6 a method is proposed wherein the fre-

quency-dependent nature of dissipative materials is taken into account.
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V.2, Correspondence Princip.e for Linear Dynamic Viscoelasticity

For the case of sinusoidal osciliation problems, Bland
(135, p. 67] has statea the following elastic-viscoelastic correspondence

principle:

If the elastic solution for any 3ependent variable in a par-
ticular problem is of the form f = Re(f¥ eiWt) and if the
elastic moduli in fy arg replaced by the corresponding
complex moduli to give fyg then the viscoelastic solution
for that variable in the corresponding problem is given by
f = Re(fyg el®t) . By "corresponding problem" is meant the
identical problem except that the body concerned is visco-
elastic instead of elastic. The principle can only be used
if (1) the elastic soplution is known, (2) no operation in
obtaining the elastic solution would have a corresponding
operation in the viscoelastic solution which would involve
separating the complex moduli into real and imaginary
parts, with the exception of the final determination of f
from f£* and (3). the boundary conditions for the two cases
are identical,

This principle is the basis for the damping studies in this disserta-
tion. The oscillatory problems to which it is applied are the free
vibration and the stea’y-state fixed vibration of the substitute
structure composed of an assemblage of finite elements. In this
connection, it should be noted that the "elastic solution" mentioned
in the principle need not be an exact solution of three-dimensional
elasticity. It is valid to apply the principle to an approximate

theory of elasticity as well [86, 135, 136].
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V.3. Viscoelastic Properties of Polymers

Because the rost common materials used to provide damping are polymers,
their dynamic viscoelastic properiies are now discussed. Only a summary
is given in order to provide a perspective on the assumptions used in
this dissertation and in other investigations of structural damping.
The mechanical properties of polymers is a broad subject and, indeed,
several thorough studies have been published [137 - 14k]. References
[140] and [142] are, in fact, specificelly intended for the design
engineer.

Polymers are materials composed of extremely long, chain-like
molecules. The basic units of these chains are monomers which are
usually organic substances. There is not only a great variety of such
substances which can be used as constituents, but there is also a mul-
titude of chemical and physical processes which can influence the form-
ation of the final product. Hence, there is effectively an infinite
number of possible plastics with widely varying properties and applica-
tions., Attempts to describe so diverse a class of materials can be
confusing. However, this variability of properties is one of the main
advantages of volymers because it permits the technoclogist to design
a material with characteristics suitable for a particular application,
Fortunately, some generalizations can be made about the behavior of
these substances because such behavior is related to the chain-like
molecular structure peculiar to all members of the class.

Elastomers are the polymers of primary interest to engineers con-
cerned with damping. These by definition are materials which exhibit
rubber-like behavior in the frequency and temperature rarges of their

application and which must be mostly amorphous in the sense that the
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molecules are arranged randomly. (However, it should be noted that in
some cases there is a small degree of crystallinity, the effect of which
is to tie the amorphous regions together.) Like all high polymers, the
elastomers possess viscoelastic properties which exhibit a marked
dependence upon time and temperature.

V.3.1. Temperature Dependence

The basic behavior of polymers can be ascertained by measuring
the viscoelastic properties over a broad range .7 temperature. Any
one of several parameters may be chosen as repres: “tative, e.g., the
viscosity, creep compliance, relaxation moiulus, etc, The came quali-
tative trends of behavior are detectable from any one of the experiments,
although the specific results will depend upon the time (or frequency)
of measurement and the method. Figure V.2 shows a schematic plot of the
storage modvlus of & linear amorphous polymer as a function of temper-
ature. TFive regions of viscoelastic behavior are identifiable [137].
Starting at the lowest temperatures, the first is the glassy region in
which the polymer is hard and brittle. In this range of temperatures,
the molecules are "frozen" in relatively fixed but irregular positions.
There is sdme vibration about this fixed position, but there is essen-
tially no diffusional motion. The second region in which the modulus
rapidly changes value is called transition and polymers in this stage
are often characterized as lesthery. It is theorized that segments
(i.e., fractional lengths of the molecules) undergo short-range diffu-
sional motion at these temperatures, although the molecules as a whole
are not mobile. The third type of behavior, best described as rubbery,
may extend over a fairly broad range of temperatures without much change

in modulus (e.g., from -20° C.to +180° C. for sulfur-cured natural rubber
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{137]). This region represents behavior most typical of elastomers.
Here segmental motion is quite rapid, but the entanglement of the
chains retards overall movement of the molecules. If the molecules
are linked together, these "entanglements" are permenent. As the
temperature is further increased to the region of —ubbery flow,
the uncrosslinked polymer is still elastic to a degree; but the
motion cof molescules as a whole becomes important, and actual flow
occurs as the chains slip. Crosslinked materials do not exhibit
th&s high-temperature creep, but retain much of this elasticity.
Finally, at the highest temperatures, long-range configurational
chances of the unlinked molecules occur very rapidly. In this
liquid flow region, elastic recovery becomes negligible.

The transition stages and the cemperatures at which they
occur affect practically all of the mechanical properties of the poly-
mers [140]. In particular, the dynamic mechanical dispersion will be
discussed in Section V.3.3. Insofar as elastomeric behavior is concern-
ed, the most significant transition is the glass transition. The
rubbery flow transition or melt temperature is also important since i:
indicates the onset of flow. In addition, there are various less imp-
ortant transitions, for example, those associated with the motion of
side branches to the main molecules. Only th= firsi two phenomena are
described here. The glass transition occurs over a narrow temperature
range (about 10° C.) and can be determined by measuring ‘the specific
volume as a function of temperature. In Figure V.3, this “.ransition
is indicated by Tg and is associated with a discontinuity in “he
coefficient of thermal expansion. The crystalline transition temperature,
T , is less well defined since it does not characterize an abrupt, ideal

m

melting. With increasing temperature, this transition corresponds to a
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change from a partially crystalline configuration to a completely amor-

phous one.

V.3.2. Temperature-Frequency Interdependence

Since the pehavior of polymers is dependent upon both time and
temperature, a complete knowledge of the mechanical properties of a
plastic can be obtained from tests conducted at many different tem-
peratures and frequencies. Fortunately, such thorough investigations
indicate that there is some anelogy between the effects of temperature
change and those of frequency change. Hence it has been possible to
develop approximate reduction principles which relate these effects.
The principles use data obtained at a variety of temperatures and a
given frequency to deduce properties at a different frequency and
vice versa. These methods are applicable for amorphous polymers and
eppear to be valid in the -temperature range from the glass transition
region to the liquid flow region [140]. Ko details of the reduction
principles are given here. For the present purposes, it is sufficient
to note that the effect of increasing the temperature or decreasing
the frequency is qualitatively the same. Hence, for example, Figure V.C
may be interpreted as a schematic plot in which the abscissa is the

inverse of the frequency rather than the temperature.

V.3.3. Dynamic Mechanical Dispersion

The most important effect of a transition insofar as damping is
concerned is the mechanical dispersion which occurs near the transition
temperatures, especially near Tg . This phenomenon is analogous to
optical or dielectric dispersion. The features of the mechanical dis-

persion associated with the glass transition for an amorphous polymer
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are schematically shown in Figure V.h. Tt is seen that the storage
modulus changes from a lower to a higher value over this region while
the loss modulus and loss tangent pass through a maximum [14L4]. As
pointed out in Section V.3.2, the molecular mechanism of the damping
during this transition is the coiling and uncoiling of chain segments.
When maximum damping is required, materials are employed which undergo
glass transition in the relevant frequency and temperature range.
Highly amorphous polymers are preferred since crystallinity tends to
decrease the intensity of the phenomenon. One example of the develop-
ment of damping compounds with high loss factors over a wide range of
temperatures is given in Reference [98]. There several rolymers with
different glass transition temperatures are mixed to give a blend with
more than one Tg and hence a broader range of the favorable damping
associated with the dispersion phenomenon. When temperature insensi-
tivity of damping is desired with a single polymer, its elastomeric
behavior between Tg end T ié employed [14L4] (See Figure V.2). 1If
Tm is approached and if strength is elso a concern, polymers with a

degree of cross-linking between molecular chains may be used.

V.3.4. Additional Factors Influencing Behavior

Although frequency and temperature @ e the primary factors affect-
ing the viscoelastic behavior of polyaners, there are other physical and
chamical effects that must be considered. Crystallinity and cross-
linking have already been mentioned. The properties of the final product
may also be affected by copolymerizaticn, polyblehding, and the addition
of plasticizers and fillers [138, 139, 75, 97].

Copolymerization is the formation of polymer ~.lecules from more

than one type of monomer. When the constituents occur randomly along
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the chains, a new polymer is produced which is unlike. any of the poly-
mers composed of the separate monomers. Another type of copolymer
occurs when chains made of different monomers are attached either to
make one chain (block copolymers) or to meke branching mclecules
(graft co-polymers). These nonuniform or heterogeneous polymers
exhibit multiphase properties similar to mechanical mixtures. Each
component will retain its own glass transition, so the resulting
copolymer will have more than one Tg (139].

Polyblends are merely mechanical mixtures of two or more polymers.
The effect of this blending was discussed in the preceding section [98]
and the preceding paragraph. In brief, the result of such mixtures is
a product whose properties are intermediate to those of the constituents.

A plasticizer is an orgsnic liquid used to dilute the polymer.
This dilution increases the chain mobility and lowers the glass transi-
tion temperature. Hence, plasticization can be used to adjust the
optimal damping to the desired temperature or frequency range [9T7].

Fillers are inert materials added to the polymer. Because there
is no chemical interaction with the plastic, there is usually not a
significant influence on the temperature and frequency characteristics
[95]. However, for some types of fillers there is sufficient mechani-
cal interaction between the filler particles and the polymer molecules
to increase damping efficiency and to broaden the operable temperature
and frequency range of the useable damping [97].

In brief, it is apparent that there are several technijues by
which polymer technologists can design materials for a specific appli-
cetion. However, despite the ability to adjust the glass transition
temperature, it is not always possible to obtain efficient damping from

a given polymer. For example, crystalline polymers are nearly always
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impracticel for damping applications.

V.3.5. Summary

The strong dependence of the viscoelastic properties of polymers
on temperature and frequency has been pointed out. As a result, it is
seen that the common approximations of temperature- and frequency-
independence of structural damping can lead to rather large inaccuracies.
However, when applied with care over appro- ‘ate ranges of frequency
and temmnerature for a particular dampi-g material, these assumptions can
also provide useful results. Finally, there is some justification for
the oversimplification of material behavior when real possibilities of

designing materials to fit the assumptions exist.
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V.4. Measures of Effective Damping

Of the many ways to express the damping of a vibrating structure
[87, 94], two primary measures are used here. These are the loss
factor, n , and the logarithmic decrement, & . Damped oscillatory
motion of the discretized structure can be written in the following

form

*
{v(t)} = Re|{w} &1t e-w?t) = Re {w} ¥t (v.3)
where {v(t)} is the vector of nodal displacements, {w} is the vec-
tor of displacement amplitudes, wl is the frequency and w2 is the

decay constant. The latter two parameters are combined into a complex

*
modulus, W

w =W +oiw, (v.h)
Then the logarithmic decrement is given by [115]
§ = 2m,/w, (v.s)
and the loss factor by [118]
* *
n = Im(w 2)/Re(w °) . (v.6)

Since both measures are expressed in terms of the same parameter, they
can in turn be related by

n e —S0

(1 ~ 62/41°)
(v.7)

(o]
I

on | ————
-T_W_‘l+r. -1)

An alternate, but equivalent definition of the loss factor is useful for
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dealing with forced vibrations. In terms of the energy of the vibrating

system, it is possible to write

n == (v.8)

where D is the energy dissipated per cycle and W is the total energy

associated with the vibration [9h4, 1L5].
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V.5, Complex Algebraic Eigenvalue Troblems

The information and principles given in the preceding sections are
now applied to the damping studies of freely vibrating layered struc-
tures using the finite element method. Apparently, the present work
is the first such application of the method to structural damping prob-
lems. The techniques that are used in this section and the next are
not limited to the particular formulation given in Chapters II and III.
Rather, the approach can be used for any finite element discretization.
However, since an efficient and widely utilized damping mechanism is
the shearing of constrained layers [88], the theory developed in this
dissertation is particularly appropriate.

For frequency-independent material properties, the elastic-
viscoelastic correspondence principle can be applied to the free

vibration problem of Equation (IV.2) to give
* * * *
(K )M} = w,® D{w)) (v.9)

Here the complex moduli corresponding to a specific representative fre-
quency are substituted for their real counterparts in the stiffness,

and the complex frequency replaces the real frequency. The lumped masses
remain real; but since the eigenvalue problem is now complex, the mode
shapes may also be complex. Equations (V.9) are reduced to standard

form in a manner exactly parallel to that presented in Section IV.2
except that the algebra is no longer real. The computer programs are
readily adapted for this change if the particular computer used is
capable of accomodating complex arithmetic. Moreover, standard routines

*
are available for the complex algebraic eigenvalue problem.

*
Two different SHARE Library subroutines, F2 OR AMAT and F2 NYU EIGY, have

been adarted for use in the present investigations. They produce iden-

tical eigenvalues although cnlv the former calculates the mode shaves.
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As is evident from Equations (V.4) te (V.6), tue eigenvalues give
both the natural frequency of vibration of the damped system and the
effective viscoelastic damping at each natural frequency. The eigen-
vectors correspond to the decaying mode shapes, and there is no special
significance to the fact that these vectors may be complex. The shapes
may be obtained from the real parts. Hence, both the free vibration
characteristics and the damping behavior are obtained in a s.gle
analysis. It should be noted that the computational time is greater
than that for the purely elastic free vibration problem. Complex
algebra essentially doubles the number of equations, and arithmetic
operatién* counts are therefore increased by a factor of two to eight,
depending upon the procedure being carried out. For example, the
solution of simultaneous linear equations has an operation coint pro-
portional to the square of the number of equations; for this process,
therefore, the number of operations is quadrupled.

Because the frequencies are unknowns in a free vibration problem,
it is difficult to account for the frequency-dependence of the com-
plex moduli. An additional complication is that the properties corres-
ponding to only one frequency can be used as input, but several
different frequencies are obtained in the solution. If the viscoelastic
behavior is relatively insensitive to frequency over the range of the
lowest natural frequencies, as is the case for polymers in the rubbery
plateau region, it is reasonable to use representative values of the
moduli and to assume that these values are freguency-independent. For
materials with highly variable properties, the free vibration approach

is less satisfactory. When the damping at only a few of the natural

*
An operation consists of one addition/subtraction and one multiplication/

division.
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frequencies is of interest, a series of different trial solutions may
be worthwhile. The first of these trial solutions would be the elastic
case. Since relatively light demping hes but slight effect on the
natural frequencies, the viscoelastic materiasl properties corresponding
to the elastic natural frequencies can be used in subsequent solutions.
These procedures can be time-cousuming because a separate solution cf
the entlve complex eigenvalue problem is required to obtain an accurate
estimate of the damping at each natural frequency of interest (i.e.,

[K*] = [K*(u)j)] , 3 =1,2, ...).
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V.6. Damped Response to Steady-State Harmonic Loading

The steady-state forced vibration problem for a linear viscoelas-
tic structure is now investigated. The solution to such a problem
provides both the displacement response and tre effective damping for
any desired frequency ed loading amplitude. An important advantage
to this approach is that it takes the frequency dependence of the
viscoelastic material properties into account. Because the frequency
of the sinusoidal loading is an input to the problem, it is possible
to employ correct material properties with respect to frequency in
formulating the problem. It should be noted that a similar applica-
tion of the finite element method to the vibrations of linear visco-
eilastic solids has been developed simultaneously, but independently,
by Murray [146]. However, Murray's work is primarily concernea with
the displacement response and does not consider the effective damping

of the system.

V.6.1. Formulation of the Problem

If the loads and displacements oscillate at frequency &

{p} ¥

{w} eiQt .

{v(t)}
{v(t)}

(v.10)

the corrsspondence principle given in Section V.2 can te applied to

Equation (IV.1) to give
[[K*] - @? tMJ] '} = (P} (V.11)

Here the frequency  is real since there is no decay of the response.
Moreover, the vector of load amplitudes {P} is real. This vector can

be visualized as being directed along the real axis of a complex
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co-ordinate system which rotates at constant angular frequency & .
Then the displacement ampli de vector {w*} must be complex since
it lags behind the loads due to the dissipation of energy. This
load-displacement relationship is analogous to the stress-strain
relationship discussed in Section V.1l and shown in Figure V.1. 1In the
present section, however, the co-orainate system is assumed to rotate.
[K*] in Equation (V.11) is the stiffness matrix wherein the complex
moduli associated with frequency  are substituted for the corres-
ponding real moduli.

Bieniek and Freudenthal [47] have utilized an approach similar to
the abo" » to study the forced vibrations of leindrical sandwich panels.
However, their applic=tion is to a Fourier solution of the closed-form
equations rather than to a general discretized system.

The solution of Equations (V.11) presents no difficulty when éhe
appropriate computer programs are transformed to the complex mode. As
pointed out in Section V.5, the computational time is about four times

ereater than for an equivalent real system.

V.6.2. Interpretation of Results

In contrast to the corresponding elastic forced vibration equations

which are
ﬁx] - QQMJ] {w} = {p} , (v.12)

Equations (V.1l) cannot become cingular at the natural frequencies of
the structure. In other words, although det ([K] - QQtMJ) may vanish
at some values of § , det ([K*] - Q2fMJ) is always non-zero, provided
the frequency is real and * e o .+ ‘ia8 some non-zero imaginary

parts. This lack of singule . . .. out the effect of energy
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dissipation. As a resilt of the damping, the magnitude of {w*} , unlike
the magnitude of {w} , cannot grow without bound at resonance. In fact,
the effect of viscoelasticity is to reduce the amplitude of the response
at all frequencies.

The actual response of the structure can be determined by taking
the absolute value of the elements of {w*} . Each such magnitude is
then given the sign of the corresponding real part of {w*} . In fre-
quency regions near the natural frequency of the structure, it is noted
that the sign of the response changes without the displacements becom-
ing zero. This jump i sign is associated with the change in sign
which occurs for the real part of det ([K*] - tamJ) near the natural
frequency. Hence, if the response is obtained for a series of frequen-
cies, an estimate of the natural frequencies within this range can be
obtained by studying (1) the sign changes of the response and (2) the
magnitude of the response. The latter will tend to ge through maxima

near the natural frequencies.

V.6.3. Determination of Effective Damping

The individual components of the response do not lag behind the
load by the same phase angle. Therefore, the most convenient way to
compute the effective damping is on the basis of the energies of the
vibrating system. The definition of the loss factor given in Equation

(v.8) is used for this purpose.

= D
n =5 (v.8)

Here W is taken as the maximum strain energy achieved during any

cycle.
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In order to compute the various energiec, the complex notation that
has been used must be discarded. This notation represents the simul-
taneous treatment of two oscillations which are 90° out of phase [136].
A complex "work" quantity would be meaningless, however, so the method
of accomodating the phase difference must he modified. Consider the

displacements and associated nodal forces which are harmonic at frequency

Q

{v*(t)}= {v:} eim’ {v:} (cos @t + i sin Qt)

(v.13)

{V*(t)]-={vz} it {v:} (cos Ot + 1 sin Qt)

These forces and daisplacementis are related by the stiffness equation
* % *
v} =[x v } (v.1la)

which may also be written

{vl + iVe} = [K1 + iK2] {vl + iv2} . (V.1kb)

*
Hence the real and imaginary parts of the force vector {Vo} are given
by:
vy} = [k Hv b - [K,1{v,)} (v.15)

W K vy} + [Ky)v)

However, tne real parts of the two vectors can also be obtained from

Equations (V.13):

{v} = Re (v}

{v}

{Vl} cos it - {V2} sin Qt (v.16)

Re {v*} {vl} cos Ot - {ve} sin Qt
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Now, given the real oscrillatory displacements

{v}l = {wo} cos §it , (v.17a)

ice., {Vl} = {wo} and {v2} = {o} ,

*.quations (V.15) and (V.16) can be used to obtain the associated real

forces
{v} = EKl] cos it - [Kz] sin Qt]{wo} (v.170)

Here {wo} is thae vector of displacement magnitudes (witbh sppropriate
*
signs) obtained from {w } , the solution of Equations (V.11).

The energy dissipated during a complet< period is given by

21 /Q
D= ,[. VY at (v.18a)
0
where
{Q} = -Q{wo} sin Qt . (v.18b)

Substituting Equation (V.17b) into (V.18), the result is

2n/Q
D= -fw }T | [k, ]{w } ./. sin Qt cos Qt dt +
o) 1° o
0
o1/9 (v.19)
2
_ 1 .
[K2]{wo‘ f sis” Ot 4t

C

The first integral of £quation (V.19) vanishes and is therefore associ-
ated with energy stored in a recoverable form. Hence the maximum value

of the strain energy achieved during any cycle is given by
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W= % {wo}T[Kl]{wo} : (v.20)

The second integral of Equation (V.19) equals 7/ so the energy

dissipated can be written
D = nlw } [k, Hw } (v.21)
o 20" -

Equations (V.20) and (V.21) are now substituted into Equation
(v.8) to obtain the following expression for the effective loss factor

of the structure:

T
RCARCAICR

n=7T"107
v Y70 1w )

(v.22)

This expression is identical to one derived by Ungar and Kerwin [145]
for a lumped-mass system using a different approach. Equation (V.22)
is readily incorporated into a computer program. The calculation of
the loss Tactor is particularly efficient if the banded nature of the

stiffness matrix is utilized.
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V.T. Ezamples of Damped Vibrations

As in the preceding chapters, the examples in this section are
limited by the lack of solutions available for comparison with finite
element solutions. Therefore, although the discretized method can be
applied to any configuration, the structures analyzed here are of sim-
ple shape. In the first example, the free vibrations of two beams are
considered. The second problem undertaken is the free vibration of a
simply supported cylinder. Finally, the forced vibrations of a beam

under three different steady-state harmonic loads is presented.

V.7.1. Damped Free Vibrations of Two Beams

The beams considered in the examples of Sections IV.Lk.1. and
IV.4.2. have been re-aunalyzed with viscoelastic properties assumed for
the core. For each beam, the loss tangent of the core moduli is taken
to be 0.1. This is a representative value for moderately efficient
damping compounds, alﬁhdugh some polymers have loss tangents up to 2.0
for limited ranges of frequency and temperature. All properties are
the same as the elastic _roblem with the exception of the material

properties, which are now complex. For the long beam, the moduli are

E, = (E ) = (10.3 x 106, 0.0) psi ,

g = By Bpp
G, = (3.87 x 106, 0.0) psi

=
1}

(2.34 x 1oh, 2.34 x 109) psi

(1.17 x 1oh, 1.17 x 103)

(9]
]

psi

and the viscoelastic results are presented in Table V.1l. For the short

beam, the moduli are



1Ls

T

E,. = (10', 0.0) psi, Gy = (3.8: x 106, 0.0) psi

f
E_= (1.26 x 10°, 4.26 x 10") psi

5

6, = (1.565 x 10°, 1.565 x 10°) psi

and the frequencies and loss factors are given in Table V.E..

Comparison with a solution adopted from Yu [115, 34] shows that
there is good agreement between the methods, particularly for the lower
modes. This is to be expected because the discretized approach cannot
accurately approximate the displacement shapes 5f the higher mcdes. The
tables indicate that a greater proportion of the natural frequencies
computed by the finite element method compare favorably with the theore-
tical values than do the loss factors. A possible explanation for this
observation is that the frequencies are less sensitive to the approxima-
tions of the mode shape which are inherent in the lumped mass approach.
By concentraiing the inertia at the nodes, a certain amount of shear
"kinking" is introduced at these locationms.

By comparing Tables V.1 and V.2 w_th Tables IV.1l and IV.2, it is
evident that the relatively light damping has but slight effect on the

natural frequencies.

*The real parts of the above complex moduli are the same as the real
moduli used in the elastic examples, It should also be noted that the
light density for the core of the long beam is realistic for a foamed
plastic; kowever, the core moduli chosen may be atypically high for
such a material.
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V.7.2. Damped Free Vibrations of a Cylindrical Shell

This example is also a recasting of a previously used elastic
vibration example so that the effect of viscoelasticity on the natural
frequencies can be illustrated. In this case, the simply supportea
cylinder studied in Section IV.4.3 is re-analyzed with two different
sets of core properties. For the first set, a light-damping core with

a loss tangent of 0.1 is assumed. Hence the material properties are

T 6

, 0.0) psi
L

E, = (10

E = {2.6 x 10
[}

, 0.0) psi, v
i

g = 0.3, G, = (3.85 x 10

, 2.6 x 10°) psi, v, = 0.3, 6, = (10", 10%) psi

and the results are presented in Table V.3. The second set of material
properties includes a more effective dissipative core with a loss tan-

gent of 0.5. The material properties are therefore

T 6

E, = (10 = (3.85 x 10", 0.0) psi

o , 0.0) psi, v

e = 0.3, G,
E, = (2.6 x th, 1.3 X 1oh) psi, v, = 0.3

G, = (th, 5 x 103) psi

and the solution is given in Table V.4. All other properties and
dimensions are the same as were used in Section IV.L.3,

The natursl frequencies and loss factors are contrasted to those
obtained by Yu's theory [37, 116]. In general, solutions from the two
methods compare well. The quality of the finite element results for
the shell is similar to that for the beams given in Section V.T.1
above, and the observations of that example also remain applicable in
the present case, In addition, the effect of increasing the dissipa-

tive capabilities of the core material can be ascertained by comparing

*
See the footnote in the previous example.
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Table V.4 with Tables V.3 and IV.3. Not only does the core with the
higher loss tangent provide more effective damping as expected; but it
also has the effect of stiffening the structure somewhat, particularly
in the longituvdinal or shell flexural modes. Hence, the natural fre-
quencies are higher for the heavily damped case, although the increase
is slight (less than 5%). It is interesting to note that an increase
in the core loss tangent by & factor of 5 results in approximetely

five-fold increase in *he loss factor at all frequencies.
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V.7.3. Steady-State Forced Response of a Beam

In order to illustrate the method proposed in Section V.6, the
steady-state forced vibrations of a simplysupported beam are now inves-
tigated. The short beam used in Examples IV..4.2 and V.7.1 is used with
a viscoelastic core. The effect of frequency dependence of the material
properties is demonstrated by contrasting the solutions for frequency-
dependent and frequency-independent cases. The beam is represented by
both four and ten linear shear-strain elements. In general, the results
for the two representations are quite similar, indicating a sufficiently
fine mesh to obtain convergence. Therefore, to keep the graphs unclut-
tered, only the ten-element results are shown in the accompanying fig-
ures. Rotatory inertia is included.

There are no readily available theoretical solutions with which to
compare the results of the present problem. Hence, the frequency-
independent properties are taken to be the same as in the viscoelastic
free-vibration example of Section V.7.l. It is then possible to have a
limited comparison between the free and forced vibration problems. The

complex moduli are assumed to be

E, = (107, 0.0) psi, G, = (3.84 x 106, 0.0) psi

. 1
E = (.26 x 107, 4.26 x 10") psi,

c

G
c

(1.565 x 10°, 1.565 x 10) psi

The frequency-dependent core properties are shown in Figure V.5. Al-
though these do not represent actual properties of a specific material,
their variation is typical of elastomers near the glass transition tem-
perature [88, 95, 14h4]. 1In addition, their magnitude is selected so

that the frequency-independent properties are a reasonable approximation
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of the variable properties. 1In particular, the moduli for the two
cases are the same st { = 10,000 radius/second. It is assumed that
the Poisson ratio is real and frequency independent.

The response and damping for three different load cases are shown
in Figures V.6 to V.8 for a range of frequencies of the beam. In each
case the frequency-dependent and -independent solutions are shown to-
gether for ready comparison. The X's in the figures represent the
free-vibration solutions for the loss factor (Table V.2). The three
different load cases are (1) concentrated loads at all nodes selected
to match the inertial loads corresponding to the first fundamental
mode, (2) same as case one except chosen tc match the second fundamental
mode, and (2) a uniformly distributed load of unit magnitude. The
displacement response for each of the load cases is given by the mag-
nitude of some characteristic displacement. For the first two load
cases, this characteristic displacement is chosen as the transverse
displacement at the unit concentrated loads. The mid-point deflection
is selected for the third load case.

The loss factors for constant properties in the first two load
cases compare favorably with the free vibration loss factors of the
respective modes. It is seen from Figures V.6 and V.T that, for con-
stant material properties, the loss factor varies very little over the
frequency range. The first load case causes deformation typical of
the first mode at all frequencies; and, similarly, the second load
case creates priliarily second-mode displacements. Hence it can be
concluded that the loss factor depends larg:ly upon the deformation
pattern. In fact, when rotatcry inertia is neglected, the loss fac-
tors for the two cases under consideration are invariant with respect

to the forcing grequency. The third load case, in contrast, is not a
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"modal" load and thus excites displacements corresponding to various
natural modes, particularly the symmetric shapes. Hence, although the
response curve in Figure V.8 does not show a noticeable resonance cor-
responding to the second mode (wvhich is antisymmetric), the loss factor
curve does indicate a change in the basic deformation pattera for fre-
quencies in the neighborhood of this mode. Moreover, at the first
fundamental frequency, the loss factor matches the free vibration result
since the symmetric loading readily excites the related mode shape.

It should be noted that the curves for the loss factors in Figures
V.6 to V.8 are smoothed near the natural frequencies of the structure.
Using the approximate method of computing loss factors on the basis of
energy (Section V.6.3), there are apparently some numerical instabili-
ties in a small neighborhood of frequencies near resonance. This
smoothing has been accompl.ished by discarding at most one data point in
such a neighborhood. Since small frequency increments are employed in
these regions, it is felt that this procedure is justifiable.

The displacement response curves in Figures V.6 through V.8 are
reasonable representations of the behavior that might be expected for
a lightly damped structure [47]. If a more effective damping compound
were employed, the resonance peaks would be less pronounced. This is
evident from the amplitude reduction resulting from the variable
material properties, which give greater dissipatidon at the first ‘unda-
mental frequency (Figure V.6).

The extent of the possible effects of frequency depenuence of the
material properties is evident from a comparison between the pairs of
curves. It should be granted, however, that the extreme variability of

the properties near the glass transition temperature presents a
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particularly severe situation. If the frequency range of interest were
to correspond to the rubbery plateau of Figure V.2, the properties
would be more slowly varying functions of the frequency. Nonetheless,
the proposed method of accomodating the variation of properties appears
useful for obtaining both the steady-state response and damping of an

harmonically loaded viscoelastic structure.
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CHAPTER VI. SUMMARY AND CONCLUSIONS

The finite element method has been extended to the refined
analysis of muitilayer beams, plates and shells. In the theory
employed no restriction is placed upon the ratios of the layer
thicknesses and properties. The method is applicable to structures
wherein shearing deformations are significant, including sandwich
construction.

Specific element stiffnesses based on polynomial ~4-placement
models have been developed for the linear elastic analysis of beams,
circular plates and thin, axisymmetric shells with arbitrary meridians.
In each case only the specialized configuration of three-layered con-
struction symmetric about the reference surface has been studied.
However, general procedures have also been outlined for developing
other types of one- and two-dimensional finite elements.

The method has been applied to the elastic analysis of several
beam, plate and shell structures with properties typical of sandwich
construction. Examples have been presented for both static and free
vibration analysis and the finite element results compare favorably
with solutions from other theories and approaches. Generally, the
other techniques can only be used for the analysis of sandwich
structures with the simplest of configurations. Hence there is a
great potential for the application of the finite element method to
the solution of sandwiches of arbitrary shape.

One of the features of the formulation developed in this disser-
tation is the capability of approximating the warping phenomenon.
Hence the distribution of the shearing force among the various layers

can be determined. Another feature is the use of lumped rotatory

160
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inertia in dynamic analyses. This type of inertia is a prerequisite
for tke inclusion of the thickness-shear modes of behavior, which are
important for some soft-core sandwich structures. A third aspect of
the.present work 1s the possibility of neglecting either the shearing,
extension or bending of any individual layer. By use of this capa-
bility, the effect of various approximations can be evaluated for
different geometrical or material properties.

In addition to the elastic analyses, vibration studies for
linear viscoelastic materials heve been formulated using the complex
modulus representation and an elastic-viscoelastic corrésPondence
principle. The effective damping for free vibration and steady-state
forced vibration can be obtained as adjuncts of the usual analysis
procedures by means of the complex algebra. Apparently, this applica-
tion of the finite element method is new.

For the viscoelastic free-vibration problem, the material
properties are assumed to be independent of both frequency and tem-
perature. A discussion of the characteristiecs of the most common
damping materials, polymers, indicates that these assumptions are
often invalid. In the forced-vibration problem, the frequency-
dependence of the viscoelastic behavior can be taken iuto account.
However, no attempt has been made to include the thermal effects
because of the inherent difficulties of this non-linear, coupled
problem. It should be noted that the temperature effects may be
important in damped vibrating structures since the energy 1ilissipated
into heat disperses very slowly in polymers due to their low thermal

conductivity.
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The viscoelastic analyses in this dissertation have been carried
out on the most elementery level. A logical extensicn of thais
research wculd be the study of initial value problems using a Gurtin-
type variational principle for linear .ynamic viscoelasticity (147]
to formulate directly the stiffness of the structure. An analogous
approach has already been used for heat conduction [148], coupled
thermoelasticity [:49] and quasi-static viscoelastic problems [150]

using the finite element method.
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APPENDIX A: MATRICES FOR SANDWICH BEAMS

The matrices that follow are for a three-layer sandwich beam

element of unit width and length &. The facing layers are of equal

thickness and are composed of the same material. Further detaile are

given in Section III.1.

.1. Linear Variation of Shear Strain

The relevaqt vectors for the stiffness anailysis are defined as

follows:
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u E I |
kM = cc 0 | 0 0 o 0
¢ s+ === - -
L t 12 -62 O 0
a2 32 o
symmetric 22 0
0
- -
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0 0 o Jo o 0o o
] o | o o 0 o
. kAL o lo o o o
Y - 55 2 _:_ o 0 o 1
0o 0 0 o
0o 0 o
symmetric 0 0
12 6% 0 0 l-12 60 0 0]
a2 0 22l -en 222 o g2
0 ol o o o o
M 2Belg 22 0 22 o0 2
(ke ] = 3 _-— = —
L 12 62 0 0O
4?2 o g2
symmetric 0 0
[ 1242 6a1? 0 0 |-12a® es2d” 0
9
se’a -b 2’a -ng’a :-udz 28%a® ntfa  nla
h282 hnht?| 0 ne%a -nZ? -nhn?
c f | c f
n_ 22 | 0 b 224 -h h.2? -, 22
v EfA £ _|__.____f______f___f__
(ko] = R 1242 -6242 0 0
4824% -n 2% -hfzzd
2.2 2
symmetric -hc ) hchfl
2
hed
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A.1.7. Transformation matrix ([T] = [I] of Equation (II.31)

1 0 0 0 0 c | o 0
|

0 1 h/d 0 0 0 i 1 0

0 0 1 0 0 o | 1 0
I

0 0 0 1 0 o | o 0
0 0 0 0 1 h/d : 0 1
o 0 0 0 0 0 | 0 1
L9 0 0 0 0 0| o 1

A.1.8. Comsistent load vector in giobal co-ordinates from Equations

(11.29) and (II.33).

{R}T = P—z-{(l-z— hcl 1"’ -hcl :.&_ "_2..>
2 6 6 6 6 | 6 &

A.2. Quadratic Variation of Shear Strain

The relevant vectors for the stiffness analysis are defined as

follows:
G = <oy Xy Yo Yeg ¥ Xy Yoy Yoy | Yeo Veo?
1 1% Yei Te1 ) Y5 X5 Yeg Y£3 | Veo Tfo
Y = Y, W Yy § Yeq Yes Yoo Yo~
1 Xb1 Y1 %5 Xp3 Y3 ! Y£1 Vg5 Yeo Yo

The vectors {u}, {e}, {€} and {0} remain the same as given in

Appendix A.l1. ([Z], [C] and ([G] are also unchanged.
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A.2.1. [%(§)] of Equation (IIL.19)
(1-3g2+283 w2843 0 o l2@-20) 2gtE-1) o 0 :
|
6E(E-1)/% (1-45"'352) 0 0 l65(1-€)/1 £(3E-2) O 0
0 0 (a-3t+26% o | o 0  E(¢-1) O :
|
o 0 0 @-3E+28%y 0 0 0 E(6-D)
I o 0
{
p o 0
:45(1—5) 0
| 0 QD]
A.2.2. [B(E)] of Equation (II.20)
>
6 2536y ea- 16_26-1) 21-36) Leae-
720 230 E-d) 0D §A-30) guEn o :
0 0 (1-3e+2£%) o | o 0  E(2£-1) o
3d2e-1) L(3e-2) 39(3—4&) gy 12 : (1~zr) d(3¢-1) 39(1—45) El-"'-(1-45)'
PE A A T) 2 (3746 ) 28 28 |
%—Q—zg) —92:(2-39 0 l(4:;-3) : 72D -(1-35) 0 %(45—1) |
2 I
0 0 0 a-3e+26H o 0 0 E(28-1) |
341-20) S2-3p) 39(4 3) i-(4 _3) :E(z -1) 9—(1—3 ) El-‘3'-(4 -1) P‘g(ﬁi—l)'
2(1-28) (2-38) 50(4E-3) 54 82 §) 3, 48-1) 57 |
S« 2 0 26 5D 2an 0 fa-m !
L |2 ‘
o 0 0 a-3g+26H | 0 0 0 E(28-D) |
| 4
| 7020 o |
> |4 0
| 2h_ 2h,
| ¢ (261 —3=(28-D)
| 4,
| Q 2(1 28)
| o 4E(1-E)
| Zh 2h
' T (1-28) —(1—25)
| L.4_
| 0 2(1 28)
| 0 4E(1-8)

~
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A.2.3. [kq] of Equations (I1.29) and (III.9)

o o o o0 0o o 0o o0 o

0 0 o | o 0 0 o | o 0

a0 : o o0 -1 0 : 2 0

0] 0 0 0 ol o 0

[ch]=5°—A-§§i Te o o ol o
6o 0 o : 0o 0

“ 0| 2 o0

o] o 0
symmetric -I—l_f._ - 0—

I 0
12 es  -42 0 | -12 62 -4 O | 8, 0]

w? -3% o : -6r 222 -2 o0 : w? o

78273 o0 ! 4 -2 2%3 0 | -88%/3 o

|
LoEL 0 1'_0__0__"__04_9_*0_
kM1 = =55 12 -6% 4. 0| -8 0
. 2 2 | 2

ot 0wt oo

7233 o0 !-8.9.2/3 0

L.

symmetric l 1622/3 0

! 0




Q.
(kY

KfAfoR.

15

0 0
0
symmetric
(12 62
452
symmetric

0o | o
o | o
|
0 | 0
s | o
0
=48 | -12
|
-38% ) -62
o lo
9 |
78%/3) 4%
12

1— ——————
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o | 0
o | o
0 : 0
-1 1o
o Te T
0 | 0
0 : 0
b
0
-4 |0
22 1o
)
22730 -
45 o
-322: 0
o o

783310 -823/3
T

1

622/3
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A.2.5. Consistent load vector in global co-ordinates from Equations
(11.29) and (II.33)

p_R h & =h & |
{R}T‘,_Z_(]_.‘Q'. < 1:_‘?'. < |
2 6 |

oMo

ot
6 e 0 0>



APPENDIX B: MATRICES FOR AXISYMMETRIC SANDWICH PLATES

The matrices that follow are for a three- layvered axisymmetric sand-
wich plate elemernt of radial leng.i. &. The facing layers are of equal
thickness and are composed of the same material. Further details are
given in Section III.Z2.

The following vectors and matrices apply for all of the elements

for which specialized matrices are given below

W@ = wx, vy >
T _ ot _ot _t t t
le®) = <erc Krc |<ec Frf 6f erf Krf Kef
ob b b b b
erf €ef erf Krf Kef >
T t t t b b b
le®} <erc €ec Yrze Erf eef erf erf eef erf >
A t t t b b _b
{lo®} Ore %c Trze %rf %0f Trzf %rf %9f Trzf
Cc 0 0
[C] = 0 Cf 0 where
9x9
0 0 Cf
E./(1-v.D) VE/Q-v,D 0
i i i1 i
. 2 2 .
[Ci] = viEi/(l-Ji ) Ei/(l-\)i ) 0 1 =c¢,f
3x3
0 0 KiGi
Z 0 0
¢
[Z] = 0 Zf 0 where
9x13
0 0 Zf

184
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0 Zc 0 1 0 0 zf 0
[2] = 0 0 z, . [Zf] = 0 i 0 0 ze
1 0 0 0 ¢ 1l 0 0
F 0 0
c
[G] = 0 Ff 0 where
13x13
0 0 Ff
) Kchhc 0 c Bf vaf 0 0 0
[Fc] = J D VCDC Ofo Bf 0 ] 0
0 VP P oora= 0 0 NS o 0
0 0 0 Df Vfo
0 0 0 vaf Df
3
Ejhy Eshy
Bi = S s Di = = s i =¢,f
(1-Vi") 12(1—\)i )

B.l. Annular Element with Linear Shear

The rodal displaceme¢nt vectcrs are chosen as follows
{q)T = {r}T = <w Xow Yo We Xox Yo Yeu Yes =
i1 'L 73 b3 '3 £f1i 'f]

B.1.1. [®(E)] of Reauution (II.19)

2 3

1 £ E 1 0 0 0 0
1/ 28/4 35212 -u /a4 -h E/d ‘-hf/d -h.E/d
v 0 0 0 1 g -1 -£

0 0 0 0 0 0 1 13



B.1.2. [B{)] -~f Equation (I1.20)

o 0 0 0 1 £ 0 0
2 2
o o -2/3% -ee/x 0 1/% 0 0
0 -1/ri -26/t8 -3£%/r% 1t E/fx 0 0
o o  a/?  3ag/e? 0 -h /20 0 “hg/28

0 d/2rg dg/xL 3d£2/2r2 -hc/2r -hc€/2rl -hf/Zr -hf£/2r£

0 0 0 c 0 0 1 g

2 2
0 0  -2/2° -6E/% 0 0 0 1/
0 -1/rg -L/t -352/r2 0 C 1/ E/r
0 o  -an® -3/l 0 h /28 0 he/2%

0 -d/2r% -<E/rf -3d6°/2ek h /2r B E/2L B, R S/2rk

¢ 0 0 0 0 0 1 £
0 o0  -2/2%  -eg/e? 0 0 A 1/%
0 -1/ri -~2£/rd -3t%/ri 0 0 1/z E/x

B.1.3, [A] of Equation (II.30)

1 0 o0 o0 0 0 0 0
0 1/ 0 6 -h/d O -h/i 0
0 0 o0 o0 1 0 -1 )
1 1 1 1 0 0 0 0
0 1/% 2/% 3/& -u/d -h /d -h/d ;hf/d
o 0o . 0 1 1 -1 -1
o 0 0 0 0 ¢ 1 0

0 0 0 0 0 0 1 1
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B.1l.4 [A—ll = [T] of Equations (II.30) and (II.33)

L h./d -2
0 -1 0
0 -1 0
D 0 0}
0 0 0

0 0

0 0
-2 -hclld
2 hclld
0 0

0 0

0 0

0 0

B.1.5. {Qu} of Equations (II1.20) and (III.21)

transverse distributed load.

T
{Qa} = 21 < Q, Q,QQ, c 0 0 0>

Q =
Q, =
Q; =

Q, =

B.1.6. {R}

{r}

(ri/: + 2./6)pi +
(r;/6 + 2/12)p, +
(rillz + 9,/20)pi +

(r,/20 + 2/30)p, +

of Equation (I1I1.33)

(riIZ + 2/3)1)j
(ri/3 + 2/4)pj
(x; /4 + 2/5)pj

(riIS + 2./6)Pj

Q -3 + 2,

20Q, —2Q, +Q
o2 3T N

21

3Q3 - ZQ4

-(Q, - Q)

2(Q, - 20, + Q)

0 0
L 0
-24 -2
L L
1 0
-1 1
1
=1 1l

for linear variation of
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B.2. Annular Element with Quadratic Shear

The nodal displacement vector is’

T T
lab" = b = <wy gy ¥y Wy Xpg Yy Yeg Yy Yoo Yeo

B.2.1. [®(E)] of Equation (II.19)

1 £ g? g2 0 0 0 0 0 0
A 2 2
0 1/% 28/% 3% -h/d -hE/d -h/d -hE/d -hE°/d  -hES/d
0 0 0 0 1 £ -1 -£ g2 g2
o o 0 0 0 0 1 E 0 g2

B.2.2. [B(§)] of Equation (II.20)
The first eight columns of [B] are the same as ([B] given in Appendix

B.li2. The transpose of the two additional ~olumns is:

£ 2€/% EXr b E/% -hc€2/2r 0 ¢ 0 hE/HL hc£2/2r o 0o o

2

0 0 0 -hE/s -thZ/Zr g2 2/ £ hE/2 hf€2/2r g2 2/ £

B.2.3. [A] of Equation (II.30)

1 0 0 0 0 0 0 0 0 0
0 1/ 0 0 -hc/d 0 -hf/d 0 0 0
0 0 0 0 1 0 -1 (] 0 0
1 1 1 1 0 0 0 0 0 0

0 1/8 2/% 3/% -hc/d -hc/d -hf/d -hf/d -hc/d -hf/d

d o o o 1 1 -1 -1 1 -1
0 0 0 o0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 1
6 0 0 0 1 1/2 0 0 1/4 0



189

B.2.4. [A™l] = [T] of Equations (II.30) and (II.33)

0 0 1 0 0 0 1 0 0 0
0 0 -3 0 0 -1 -3 ~1 4 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 -3 -1 0 4
0 0 2 0 2 2 2 -4 0
0 0 0 0 0 0 2 2 0 -4

B.2.5. {Qa} of Equationms (II1.20) and (III.21) for linear variation

of transverse loads. The notation of B.l.5 applies.
{Q}T=2‘rr2,<Q Q, @, Q, 0 0 0O 0O 0 0>
o 1 72 =3 =4

B.2.6. {R} of Equation (II.33) is the same as in B.1.6 except for the

addition of two zero elements to make the vector 10 X 1,

B.3. Disc Element with Linear Shear

When r, = 0, the nodal displacement vectors are chosen as follows

T T
{q}" = {r}" =< W, 0 0 wj ij Yj 0 ij >
- —_ e A —
B.3.1—~fEr}— of Egystion. (11:19)
o o o 1 g g3 0 0
o 0 0 0 28/% 3g2/8 ~h E/d  -h.E/d
0 0 0 0 0 J 3 -§

0 0 0 0 -0 ¢ 0 3



B.3.2. |B(§)]

B.3.3. [A]
0

0

of Equation (II.

0

20) (Note: r/&i = )

0
-2/82
-2/22

/e’

a/2?
0
-2/82
~2/5?
-a/s?
-4/
0
~2/3?

-2/22

of Equation (I1.30)

0

0

< a o L =] ©

0

0

1

0

Q Q o

0 £

2
~6E/% 1/%
38722 1

3d€/22 -hc/22

3d£ /282 ~h_ /28,

0 0
-6£/22 0
-35/22 0
-3d£/8* /28
-3a£/28° b /28
0 0
-6/ 0
-3e/02 0
0 0 0
0 0 0
0 0 0
1 0 0

3/% -hc/d ~hc/d

0 -1
0 0 0
0 0 1

190

0
0
0
-hf/zz
~h./2%
3
1/%
1/%
h./28
h /2
3
1/%
1/4
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B.3.4. [Afll = [T] of Equations (II.30) and (II.33)

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

-3 0 0 3 - -hcl/d 0 =L

2 0 0 -2 L hCZ/d 0 L

0 0 0 0 0 0 0 1

B.3.5. {Qa} of Equations (III.20) and (III.21) for linear variation of
transverse distributed loads. The notation of B.l.5 applies.

{Qu}T = 21 <0 O 0 Q 0 0>

1 B Y
B.3.6. {R} of Equation (II.33)
Q -3+ 2,
0
0
3q; - 2,
-2(Q, - Q)
h £(Q; - Q,)/d
0

{R} = 2m

B.4. Disc Element with Quadratic Shear

When r, = 0, the nodal displacement vectors are chosen as follows:

{q}T = {r}T =<wy °© 0 Yy ij YJ 0 ij Yoo Yio’

S
™

-~

v
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B.4.1. [®(E)] of Equation (II.19)

3

o o o 1 £ £ 0 0 0 0
0 0 0 0o 2/% 3£%% -hE/d -hE/d -hEX/d -h.EP/d
o 0 0o 0 0 0 3 - g2 g2
0 0 0 0 0 0 0 13 0 Ez

B.4.2, [B(E)] of Equation (II.20)
The first eight columns of [B] are the same as [B] given in
Appendix B.3.2. The transpose of the two additional columns is the same as

that given in Appendix B.2.2 with r/E replaced by 2.

B.4.3. [A] of Equation (II.30)

0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 2/% 3/% —hc/d -hf/d -hc/d -hf/d
0 0 0 0 0 0 1 -1 1 -1
0 0 0 0 0 0 0 0 0 0
0 v 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1/2 0 1/4 0
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B.4.4 [AY] = [T] of Equations (II.30) and (II.33)

0 0 Q 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
-3 0 0 3 -2 —th/d 0 -2 0 0
2 0 0 -2 L hclld 0 L 0 0
0 0 0 0 0 -1 0 -1 4 0
0 0 0 0 0 0 0 -1 0 4
0 0 0 0 0 2 0 2 -4 0
0 0 0 0 0 0 0 2 0 -4

B.4.5 {Qa} of Equations (IIT.20) and (III.21) for linear variation of

transverse loads. The notation of B.1l.5 applies.
{qQ I = <0 0 o Q, Q, Q, O o0 0 o0 0>
o 1 2 3

B.4.6. {R} of Equation (II.33) is the same as in B.3.6 except for éhe

addition of two zero elements to make the vector 10 x 1,



APFENDIX C:

MATRICES FOR AXISYMMETRIC SANDWICH SHELLS

The matrices that follow are for a three-layer axisymmetric

sandwich shell element with chord length 2 (see Section III.3).

The facing lcyers are of equal thickness and are composed of the

same matericl.

Further detalls are given in Section III.4.

The following vectors and matrices apply for all of the elements

for which specialized matrices are given below:

W@ = <w oy v v,

T ° °
{E(E)} = <E eec Y

sc sfc rc K6c
ot ot t t t b b b
esf €of YsCf st Kos ssf €of YsCf
T . t t t b
leery = < esc eec Ysl;c sf Eef YsCf esf
T t t t b
lo®}F = < osc °ec Tscc 0sf Uef Ts;f osf
C 0 0
c
[c] = 0 Cf 0 where
9x9
0 0 Cf
E,/(1-v,2) V,E,/(1~v,%) 0
i i i1 i
2 2
[ci] VE /(1-v, ) Ei/(l-v1 ) 0
3Ix3
0 0 Kici
Z 0 0
c
[z] = 0 Zf 0 where
9x15
0 0 Zf

194

i=¢,f.
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1 0 0 Ci 0
[Zi] = 0 1 0 0 ;1 , 1=¢,f.
0 0 1l 0 0
F 0 0
c
[G) = 0 Ff 0 where
0 0 Ff
Bi ViBi 0 0 0
viBi Bi .0 0 0
[F,] = 0 0 k;Ghy 0 0 , 1=c¢,f.
0 0 0 D vini
0 0 0 viDi Di
E.,h E.,h,3
and Bi ——i—ii- ’ Di = 14 > , 1 =c¢c,f.
(l—vi ) 12(1-\)i )

C.1l. Frustrum Flement with Linear Shear

The nodal displacement vectors are chosen as follows:

T
la}" = <upy vy Xpg Yy Yey Uy Yy Xpg Vi Yy 2

T 4
e} = <uy Wy Xpg Yy Uy Wy Xy Yy Ve Yey 2
C.l1.1. [®(E)] of Equation (II.19)

1 13 0 0 0 0 0 0
0 0 1 £ g2 g3 o 0

2 ’1 kN . g I ( . 2 .('} -,:: 9'2 i '.,2 :
0 cos“BtanB/% 0 AcosSBJAY-2Ecos BAL 43 cos”B/L h /d -h £/d -h./d -h.E/d
0 0 0 o 0 0 T £ -
0 0 0 0 0 0 0 0

0

0

1

1

0

0

=&
3
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3%q
¥/9800
E]
z2/2°4y
¥z/9s007y
3%q
¥/g500
3
2/3°u-
¥2/8§8097u-
0

0

0
T
2/%d%y
0
%q
0
1
z/°a%u-
0
0

0

a\mcuuummoo = “q

mNmoo\mpa| = cp

0
0
0
2/3°qu
12/8800°y
0
0
0
2/3°qu-
¥2/980° 4~
379
&,\QWOU
3

0

au\Amcmuamoo+%cﬂwvmamummm00| = 'q

N N&‘\nﬁwou = mn.
Na\mmm. guey, uz- = 2
guea/"q- = °q ¥/ (8 uea-1)g_soo,u- = 'q
rA z S s10yn
0 _
“ -—
0 gt e Taf , sTyter=r FOTBg PRy
0 ZT°TT=T .ﬂﬁhuﬁ~m.w - Fot-ng _-Frg
z/%%y
0
0
O 4
oT'6¢g=1 ‘F (S Pg . Fig
0 9 ‘Taf
2/%°u- N.ouﬁ«.nANnﬁvm.w L FsDg | Frg
0
% Nwmnm 95qz Sq 0 q 0
0 wmno+uw~nm Caz+3taz %q 0 Tq 0
T 0 0 0 0 0 0
0 u\Smoomw ux%moomw H\amouw u\smoo 1/hayrs3 a/hags
0 Npmwm Lqgz Lq 0 Q\QNmou 0
(0z°11) uworienby yo [()g] °Z°T°D
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C.1.3. [A] of Equation (II.30)

1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 7} 0 0 0 0
0 altanBi 0 -a, 0 0 -h_/d 0 —hf/d 0
0 0 0 0 0 0 0 -1 0
0 0 0 0 0 o 0 0 1 0
1 1 0 0 0 0o 0 0 0 0
0 0 1 1 1 1 0 o 0 0
0 .aztanéj 0 ) -a, -2a2 —3a2 —hc/d -hc/d -hf/d -hf/d
0 0 0 0 0 0 -1 -1
0 0 o o o o 0 0 1 1
where a, = coszB.ll
1 i
a, = coszﬁjll
C.L.4. [a71] of Equation (II.30)
1 0 0 0 0 0 0 0 0 0
-1 0 0 0 0 1 0 0o e 0
0 1 0 0 0 0 0 0 0 0
—tanBi 0 -1/a1 —hc/da1 -lla1 tanBi 0 0 0 0
a, -3 2/a1 2hc/da1 2/a1 -a, 3 1/a2 hc/da2 1Ia2
-a, 2 —1/a1 -hc/da1 -1/a1 a, -2 -1/a2 -hc/daz -1/a2
0 0 0 1 1 0 0 0 0 0
0 0 0 -1 -1 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 1

where a, = 2 tanBi+tanBj

a, = tanBi-H:anBj
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C.1.5. [T](s,ﬁ,;) of Equaticn (II.31) and Section 111.4.6;
cosBi sinei 0 0 0 0 0 0 0 0
sinBi --«':osl'li 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
.0 0 0 1 0 0 0 0 0 0
0 0 0 0 v 0 0 0 1 0
0 0 0 0 cosBj s:l.nBj 0 0 -0 0
0 0 0 0 si.nBj —cosBj 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
c.1l.6. [T] (c,0,2) of Equation (II.31) and Section IIl.4.4.

[T](r,a,z) is the same as [T] (s,0,) °SXCePt that each of the

2x2 sub-matrices corresponding to the translations is replaced by

sin §, cos Y

cos P ~sin ¢y

Note that ia {r}, u changes to u and v to wu,.

C.2. Frustrum Element with Quadratic Shear

The model displacement vectors are chosen as follows:

T
fal’ = <upy vy Xy Yoo Yer o Y1y Y23 %3 Yy ey Yeo

{r}r-<u u, w

1 Y1 Xp1 Vi 1Y %3 Y5 Yei Y3 Yeo Yfo

Ve

>

[}

>
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C.2.1. [9(E)] of Equation (II.19)
The first ten colqmns of [®] are the same as in Sectiom C.1l.1.

The additional two columns are

2 2
-h £7/d  -h £"/d

-2
62 -g

0
C.2.2. [B(E)] of Equation (II.20)
The first ten columns of [B] are the same as in Section C.1.2,

The transpose of the additional two columns is

2
-h EcosfB -h &b
0 o E2 ch:sg b652 [ - c2 6

2
“hefcosB -h E'b. ,  rios 2
g? Zgcosb ¢

0 0 0 0 0 - . :
h EcosB h E%b
C c 6 0 0 0
) 2

2
hfcosf h.E'b g2 ZEcosB .
) 2 ) 5
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tA] of Equation (II.30)

C.2.3.

—hc/d 0 -hfld 0

0

0 altanai

0

-1

0

-hf/d
-1

-h _/d

4

/d -hc/d -hf/d -hf/d

(3]

-h

—2a2 -332

0 aztanBj

0

-1

-1

-t

0

1/4

1/2

1/4

1/2

C.2.4 [A"'] of Equation (IL.30)

(= o o
o (=] =
14 o 1; o~
[=] o I O
gl &N o] «~
- K. o
(= o o
1; N e N
o o o
(= ) N
[}
-
o ] <
-] L] ]
o 1
s
N - Nl el
__a | o K]
9 = U] - o] ~
F- 2N Br-A K. | o
o o~ |o o
- N o~ -]
d_a _a 1|
= 4 ~N
L
o
m o
2]
&
|

where a, through a, are defined in Section C.1.
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C.2.5. [T](s,O,C) of Equation (II.3l) and Section IIX.4.4.

cosBi sinBi 0 O 0 0 0 0 0 0 0

sinBi -cosBi 0 O 0 0 4] 0 0 0 0
4] 0 1 0 0 0 0 0 0 0 0
0 0 o 1 0 0 0 0 0 0 o
0 0 0 O 0 0 0 0 1 0 0
0 0 o0 o cosBj ainB 0 0 0 0 0
0 0 0 0 sinBj -cosBj 0 0 0 0 0
0 4] 0 0 0 0 1 0 0 0 0
0 0 0 O 0 0 0 1 0 0 0
¢] 0 0 O 0 0 0 0 0 1 0
4] ] 0 0 0 0 0 0 0 0 1
0 0 0o o0 0 0 0 0 0 0 0

C.2.6. [T](r,e,z) of Equation (II.31) and Section III.4.4.

[T](r,e,z) is .the same as [T](s’e’;) except that each of the

2x2 submatrices corresponding to the translations is replaced by

sin Y cos Y

cos ¥ -sin Y

Note that in {i}, u changes to u and v to u.

C.3. Cap Element with Linear Shear

The nodal displacement vectors are chosen as follows:

T
{qg}° = <0 u, 0 0 0O Uy,

T
{r}* = <o u, 0 0 uy 3 Xy Y

H O QCQ O ©C O 0 0O O 0O o o



C.3.1. [&(&)]

0 0 o O
6 0o o O
0 0 o O
6 0 o0 O

0 0 0 0

0 0 0 0

0 0 0 0
(ditto)
(ditto)

of Equation (II.19)

202

~cosy £ 0 0 0 0
siny EtanBi 52 E3 0 0
2
o (tanB-tanBi)cos B -2§coszg _3£2c0533 th -th
L 2 L d d
0 0 0 0 E -
0 0 0 0 0 E
of Equation (I1I.20)
o b 2Eb 3e%p 0 0
8 7 7
2
cos cos
0 by o - 0 0
r
0 0 0 0 (3 0
2 cosf
0 b1+b2tan8i 2b2§+2b3 3b2§ +6b3E % 0
0 by b1 b2 b3 0
-hccosB -hfcosB
2% 28
e e
2 13 2 713
(See Section C.1.2) 0 g
cos
0 )
0 bl3
h _cosB hfcosB
22 2%
B, R
2 "13 2 13
(See Section C.1l.2)
0 3
cos
0 )
0 P13

where b, through b, are defined in Section C.1l.2. and

1

7
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b, = (1+tanBitan8)c0828/2

b = (simbﬂ:anBicos\P) 3

9
b10 = 9%?;5 bl4[58462+4(83-84)EZ+3(32—83)€+2(32-81)]
by, = 2b14cos38/? )
by = 351,872
b3 = b14cosB/;
b14 = giny+cosPtanB
T = r/f = !.(simlr'-!—ﬁ cosy)
n = n/
and a, through a, are defined in Section III.3,

€.3.3. [A] of Equation (II.30)

o 0 o0 o 0 0 0 0 0 0
0O 0 0 o -1 0 0 0 0 0
0 0o o0 o 0 0 0 0 0 0
6 0 0 o 0 0 0 0 0 0
0o 0 o0 o 0 0 0 0 0 0
0 0 0 0 -cosy 1 0 0 0 0
0 0 0 O siny tanBi 1 1 0 0

0 0 0 O 0 (1:anBj—t:emBi)z-;2 —282 -332 -hc/d —hf/d

0 0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 0 0 1l
2

where a, = cos“B,/% .

N
[ &



C.3.4l

CC3'5I

(a7
0 0
0 0
0 0}
0 0
-1 0
-cosy O
ag 0
ag 0
0 0
0 0
where a,
a3
24
s
36
() (e,8,0)
0 0
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

] of Equation (II.30)

0 ] ] 0 0
0 0 0 0 0
4] 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 -a, 3 1/a2 hc/da2
0 a, 2 -l/a2 -hc/da2
0 0 0 0 1
0 0 0 0 0
coszﬁjll
2tan81+tan8j
tanBi-l-tanBj
aacosw+3sinw

-aacosw-231nw

of Equation (II.31) and Section III.4.4.

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 o 0 0 0 0
couBj esinB:I 0 0 0 0
sinBJ -c:olB.1 0 0 0 0
0 0 1l 0 0 0
0 o 0 1 0 0
0 0 0 0 0 1

pege no. 206 follows

©c O O o o

204



C.3.6.

[T](r 6.2) of Equation (II.31) and Section III.4.4.
sV

(T](r,e,z) is the same as [T](S,O,C) except

sinBj

-cosBj

cosR siny cos Y

3
J

is replaced by

sinf cos Yy =sin

Note that in {r}, u changes to u and ¥ to u.

C.4. Cap Element with Quadratic Shear

The nodal displacement vectors are chosen as follows:

{q}!

)

C.4.1.

C.4.2,

C.4.3,

O ©O O © o © O 0 O ©o © C©

= <0 u g 6 0 O ulj u2j xbj Yj ij Yeo
= <0 w00 ue W gy Yy 0 Yy Yo g
[#(E)] of Equation (I1.19)
See Section C.2.1.
[B(E)] of Equation (1I1.20)
Same as Section C.2.2 except &b, 1is replaced by b,.,.
6 13
[A] of Equation (II.30)
0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 =-cosy 1 0 0 0 0
0 0 0 siny tanB1 1 1 0 0
0 0 0 0 (tan3j~tan31)a2 —2&2 -3a2 -hc/d -hf/d -
0 0 0 0 0 0 0 1 -1
0 0 0 0 0 0 0 0 1l
0 0 0 0 0 0 0 1/2 0]
0 0 0 0 0 0 0 0 1/2

206

Yo >

0>
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Hc/d -hf/d
1 -1
0 1
1/4 0
0 1/4
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C.4.4, [A'1] of Equation (II.30)

-cosy

where a, through a, are defined in Section C.3.4.

C.4,5. |[T] of Equation (II.31) and Section IIX.4.4.
(S,B,C)

0
0
1

sinBJ

0 cosBj

0
0
0

C.4.6. ([T] of Equation (II.31) and Section III.4.4.
(r,0,2)

See Section C.3.6.



APPENDIX Dese COMPUTER PROGRAM FOR STATIC ANALYSIS OF ELASTIC AXISYMMETRIC
SANDWICH SHELLS tFORTRAN 1IV)

PROGRAM AXSNSHL({INPUT »OUTPUT+TAPEL1+TAPE2sTAPE3)

ANALYSIS OF THIN SANDWICH ROTATIONAL SHELL WITH AXISYMMETRIC LOAD~
INGe CONSTANT THICKNESS SHELL WITH TWICE CONTINUOUS MERIDIAN.
MATERIAL PROPERTIES MAY NOT VARY IN THE MERIDIONAL DIRECTION FOR
THE PRESENT PROGRAMs ALTHOUGH MODIFICATION FOR THIS CAPABILITY

MAY BE READILY ACHIEVEDe NO RESTRICTION ON RATIOS OF LAYER THICK=-
NESSES OR LAYER PROPERTIES. NODES ARE NUMBERED CONSECUTIVELY
ALONG THE MERIDIAN AND IF A NODE IS LOCATED ON THE AXIS OF SYM-
METRY NUMBERING MUST BEGIN AT THIS NODEe ELEMENTS ARE NUMBRERED
SUCH THAT THE ELEMENT NUMBER IS THE SAME AS THE SMALLER ADJACENT
NODE NUMBER.

STORAGE FOR 100 NODES (AND THUS FOR 99 ELEMENTS).

SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH

LA AIR LIRSS TSRS 2RSSR SRS SRS SLSI SIS S SRS SRS S L LR

DATA CARDS FOR AXSNSHL
L TRy I Yy I Ty Y e T Y NNy I T s L

1 CARDes 110 NUMBER OF SHELLS TO BE ANALYZED
THEN, FOR EACH SHELLs ALL OF THE FOLLOWINGee

1 CARDes COLSe 2-72 TITLE

1 CARDes 3110
NUMBER OF NODESs NN
NUMBER OF LOAD CASESs NLC
NUMBER OF NODES WITH RESTRAINTSs N8C

1 CARDes 5F10.0

THICKNESS OF 1 FACING (INs)

YOUNGS MODULUS OF FACINGS (PSI)

PO0ISSON RATIO OF FALINGS

SHEAR MODULUS OF FACINGS (PSI)

SHEAR STRESS CORRECTION FACTOR FOR FACINGS
1 CARDes 5F1040

THICKNESS OF CORE (INs)

YOUNGS MODULUS OF CORE (PSI)

POISSON RATIO OF CORE

SHEAR MODULUS OF CORE (PSI1)

SHEAR STRESS CORRECTION FACTOR FOR C(R
(NOTEee SHEARING MAY BE NEGLECTED BY SETTING G TO » 79999}

NN CARDSee I10s3F1040
NODE NUMBER
Rs ABSCISSA OF NODE (IN.}
Zs ORDINATE OF NUDE (INe)
PHIs LATITUDE ANGLE OF NODE (DEGREES)

a¥aXaXa¥aXalaXakalainlaXa¥alaXaXataXaXa¥aXaXaaNaXakaXaaXaNakaiaXaXaNaRaNaaNaata¥aNaNaNaNaNaNal

NN-1 CARDS.s 2F10,0
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[a¥aNaXaXeXaXa¥aXaNaaNaXaNakakaXakakaXaNaNaXaRaXaXaXa¥aXaNaNaNaNa)

[aNaNa)

100
1000

CURVATURE AT NODE ! OF ELEMENT (1/INs)
CURVATURE AT NODE J OF ELEMENT (1/IN.)

NBC CARDS.. 5110
NODE NUMBER
TANGENTIAL DISPLACEMENT INDEX (0=FREE, 1=CONSTRAINED)
RADIAL DISPLACEMENT INDEX ( DITYO )
BENDING ROTATION INDEX ( DITYO )
SHEAR WARPING INDEX ¢« DITTO )

FOR EACH LOAD CASE,s THE FOLLOWINGes
1 CARDse 2110sL10

NUMBER OF LOADED ELEMENTSs NLE

NUMBER OF LOADED NODESs NLNMN

UNIFORM LOA" INDEXs LUL (T IF SAME DISTRIBUTED LOAD

ON NLE ADJACENT ELEMENTSs F OTHERWISE)
NLE CARDSes [10+6F1040 (IF LUL IS Ty THEN ONLY 1 CARD FOR FIRST
LOADED ELEMENT 1S NEEDED)

ELEMENT NUMBER

TANGENTIAL LOAD INTENSITY AT END | (PSI)

RADIAL LOAD INTENSITY AT END I (PSI)

MOMENT LOAD INTENSITY AT END I (INe-LBe/IN=#2)

TANGFNTIAL LOAD INTENSITY AT END J (PSI)

RADIAL LOAD INTENSITY AT END J (PS1)

MOMENT LOAD INTENSITY AT END U (iNe-LBes/IN#%2)

(NOTEse LINEAR INTERPOLATION OF DISTRIBUTED LOADS

IS USED ALONG THE CHORD LENGTH OF THE ELEMENT.)
MLN CARDSee 11043F10.0

NODE NUMRER

TANGFNTTAL CONCENTRATED LOAD AT NODE (LBe/INe)

RADIAL CONCENTRATED LOAD AT NODE (LBe/INe)

CONCENTRATED MOMENT AT NODE (i -LBe/INs}

COMMON 7/ NNJNEWNLCoNDOF ¢NBCoNRD o NLE oNLN .
Pl = 2414159265358979
READ 1010s NSHELLS

DO 100 N = 1sNSHELLS
CALL SETUF

CALL BCS

DO 100 I = 1sNLC

CALL LOADS(1)

CALL SOLVE!I)

FORMAT (11"

STOP

END

SUBROUTINE SETUP

TH1S SURROUTINE READS THF GEOMETRICAL AND MATERIAL PROPERTIES NF
THE SHELL AND SETS UP THE FOLLOWINGe. (1) OVERALL STIFFNESS MATRIX
UNMODIFIED FOR BOUNDARY CONDITIONS (2) ELEMENT TRANSFORMATION

209
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100

210

MATRICES ST ED ON TAPE 1 (3) NODAL STRESS RESULTANT MATRICES
STORED ON Taft 2 (&) CONSISTENT {OAD INTEGRATION MATRICES STORED
ON TAPE 3.

SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LE"GTH
REAL NUF sNUCsKF 3KC

COMMON /7 /7 NNsNEWNLCoNDCF oNBCoNRDsNLEsNLNSP I

COMMON /ARRAY/ S(400:8)3ST(99+10+2)+1IB8CI(50)sRL(&00)sRC(200)+U(990)
COMMON /PROPS/ HeDsHF sHCoEF sNUF s GF s EC o NUC s GC 9 BF +DF s BT DC

COMMON /XGEOM/ YP,YPPRXs(CO38+YBAR

CCMMON /ELGEOM/ R(100)+2(100), ELsSPSI+CPS]»

1 TBIoTBJUSCBI1:CBJsSBLlSB.2A1sA2:A3A4 .

COMMON 7 INTEG/ X(12),W(10)

COMMON /STMATS/ SEL(10+10)4B(125101+08(12420)sT(20s10)

DIMENSION CPHI(10N)+SPHI(100)sP(10:10s3)+P1110)+P2(10)+P3(10)>
1 PHI(100)

EQUIVALENCE (CPHI(1),Q2L(1))e (SPHI(Y)sRLI101))s (P(L)U(I)),
1 (P1lel)+J(301))s (P2(11U(311)), (P3(11,U(321))

DATA X / OeCs 06013046735741414, 0.067668316655507,

1 0.160295215850488, 0.283302302935376s 0.425562830509184,
2 0e374437169690816s 06716697657064624s 0.8397067841469512,
3 04932531633344493, 0,986953264258586. 1.0 7

DATA W / 0.666671344308688, 0,149451349150581,
1 04219096362515982, 04269266719359996, 06295524224714753,
2 04295524224714753s 06269266T71930°2996s 0.219086362515982,
3 0e149451349150581s 0.066671344308688 /

PRINT 2000

READ 1000

PRINT 1000

READ 1001s NNsNLC,NBC

READ 1002, HF sEF oNUF 4GF sKF

READ 1002s HCoECoNUCGCHKC

PRINT 2001s MNsNLCeNBCs HF 3HCs EFgNUF3GF 3 Fy ECsNUCsGCoKC
IFINN.GT.100) GO YO 900
IF(GF4GE«9999999998.0) GF
IF(GCeGE«9999999998,0) GC
H = HC 4+ 2.0%HF

D = HC + HF

NE = NN - 1

NDOF = &4&NN

1.0E+20
1.0E+20

EF = EF/(1.0 - NUF®*NUF)
EC = EC/(1.0 ~ NUCENUZ)
BF = EF®HF

BC = EC*HC

GF = GF®HF®KF

GC = GCEHC#KC

DF = BF*HF#HF/12.0

OC = BCHHC#HC/1240.

DO 100 I = 1sNDOF
DO 100 J = 1.8

S(I+J) = 040
JX = 0
PRINT 20C2

DR = 180.,0/PI
DO 110 I = 1NN
READ 1003s IsRCI)Z(I)sPHIC(I])



(&}

(4]

Ny
[ue)
b

PRINT 2003+1sR(1)42Z(1)sFPHI(I)
PHICI) = PHI(I1)/DR
SPHI(1) SIN(PHI( 1))
110 CPHII) COSIPHI{I))
REWIND 1
REWIND 2
REWIND 3
PRINT 2004
DO S00 I = 1sNE

DR = RtI+1) - R(D)
DZ = Z(I+1) - Z(1)
EL = SQRT(DR*DR + DZ=D2)

SPsI = DR/EL

CcPsI DZ/EL

SBI = CPHI(I)*CPSI ~ SPHI‘1)#SPSI

CBI = SPAl{II*IPSY + CPHI(1)®#SPS]

T8I = SBI/CBI

S8J = CPHI(I+1)#CPSI - SPHI(I+1)%#5PS]
CBJ = SPHI(I+1)#%#(PSI + CPH;{I+1)1#SPS]
TB8J = SBJ/7CBY

READ 2004+ 7TURVISCURVY
PRINT 2C05s 1+sCURVISsCURVIST_sSPSIeCPSIsTBISTBY

YPPI = —EL*CURVI/CBI#%3

YoPy = —EL*CURVJI/CBI##]

Al = TBI

A2 = TBI + 0.5%YPPI

A3 = —(5.0%TBI + 4.0%TBJ) + 0.5%YPPJ - YPP]
A4 = 3,0%(TBI + TBJ) * 0.5%(YPPI - YPPJ)

0O 150 J = 1s10
DO 150 K 110
150 SEL{JsK) = 040

COMPUTE AND STORE ELEMENT TRANSFORMATION MATRIX (A##=]1)#T
CALL TMAT(I)

WRITE(L) ((T{KsL)sl=1+10)9K=1+10)

DO 400 J = 1,12 .

YBAR = (1e0 ~ X{NIR{AL + XUJI®(A2 + X(JI)R(A3 &+ X{(J)RAL)))
YP = Al¥{1a0 — 2e0%X(J) )+ XUJIH(A2% (2,0 - 3,0%X(J)) + X{J)®(A3*®
1 (33 = 4.0%X(J)) + AGRX{J)IH{6e0 = 5,C%#X(J))))

YPP = 240%(-A1 + A2#11,0 ~ 3,0%X(J)))+ X(J)*¥(A3R(6,0 = 12.0%X(J))
1 + AG#X(J)I 211240 - 20,0%X(J)))

RX = RUIY + X(J)®EL#(SPSI + YBAR®CPSI)

. COSE = 1«0/(SQRT. 140 + YPRYP))

EVALUATE Bfs}) AT NODES AND INTEGRATION POINTS

CALL BMAT([+3)

IF({JeEQe1.0ReJEQL12) GO TO 200

ADD CONTRIBUTION TO ELEMENT STIFFNESS INTEGRATION -

C = PI#EL*RX®*W(J-1)/CQ58B

CALL SELA(Q)

COMFJUTE MATRICES FOR INTEGRATION OF DISTRIBUTFD LOADS

CALL PHITMAT(I,J)

Plty=-1) = C

"o

P2(.-1) = YP
P3tJ-1) = COSB
GO TO 400

200 CONTINUE



)

400

420

450
500

$00
1070

1001
10c¢2
1003
1004
2992
2001

2002

2003
2004

STORE MATRICES NEEDED TO RECOVER STRESS RESULTANTS AT NODES

CALL STRESS
WRITE(2) ((BtKsL)oeb=1s10)9K=]1,12)
CONTYINUE

STORE INFORMATION FOR INTEGRATION OF DISTRIBUTED LOADS
WRITE (3) ({(P(JeXsL)obL=153)4K=1,10),4J=1410)s(PILIYsP2(I)sP3 (),

1 U=1,10)

TRANSFORM 10x10 ELEMENT STIFFNESS TO GLOBAL CO-ORDINATES ANQ CON-

DENSE TO 8x8

CALL SELR(I)

STORE MULTIPLIERS AND PIVOTS
DO 420 U = 142

1o =J+ 8

D0 4290 K = 1,10

STUIsKeJ) = SEL(1J4K)

ADD 8X8 ELEMENT STIFFNESS TO OVERALL

DO 453 J = 1.8
14 = UK + )

D0 450 K
IK = K -
St1Js 1K)
JK = JK + &
END FILFE
END FILF
END FILF
RETURN
PRINT 2900

sTOP

FORMAT(72H
1
FORMATI(3I1IO)
FORMAT(5F10.0)
FORMAT(:10s3F10.0)
FORMAT(2F10.0)
FORMAT(1H1)
FORMAT{10Xs28HNUMBER OF NODES

10X, 284N JMBER OF LOAD CASES

10X+ 284NU¥BER OF RESTRAINED NODES
10X's 16HFACE THICKNESS =9F1046/
19X » 16HCIORE THICKNESS =9F 10467/
10X+8HFACE E =9F1341/

10X s QHFACE NU. =4F1245/

10X+8HFACE G =sF13e1/

10X, 10HFATE KAP =4F1145//
10X+BHCORE € =4F13.1/

10X+ 9HCORE NU =,F12.5/

10X+sBHCORE G =9sF1361/

10X 10MCORE KAP =,Flle5//

nmoeon

Je 8
+ 1
SCICeIK) ¢ SEL(JWK)

W N -

N0 &~ AN E WA -

FORMAT (7/7/11HONODAL DATA /

9 2X s4HNODE 9 7X» 11HABSCISSAs ReBXe12H ORNDINATEs Zs6X»

1 14HLATITUDC ANGLE/

2 15X4SH(INe)s15X9s5HIINe) s 13X,8H(DEGREE)}/)

FORMATI[493F20.8)
FORMAT (/1BHOELEMENT GEOMETRY /

39H ALL QUANTITIES IN INCHES AND/OR POUNDS

STIFFNESS

213/
o137/
v 1377

/)

21e
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1 8H ELEMENT 10X, THCURV{1)210Xs7THCURVIJ) 35X s12HCHORD LENGTH4s10X»
2 THSIN PSI+10XsTHCOS PSies6Xes11HTAN BETA(I ) 96Xs11HTAN BETALJ)Y/
2 18XeTHII/INe) 910X s 7H(1/ING) 2s12Xs5H({ING))

2005 FORMAT(IBs7F17.9)

2900 FORMAT(//7//7/41HONUMBER OF NODES EXCEEDS ALLOWABLE sTOP }

NN

SUBROUTINE TMATLI])

THIS SUBROUTINE EVALUATES THE CO-ORDINATE TRANSFORMATION MATRIX
(A##_1)#T FOR ELEMENT .

GLOBAL CO-ORDINATES ARE S AND X1 (MERIDIONAL AND RADIAL'!s AND
"HUS CAN BE APPLIED ONLY TO SHELLS WITH TWICE CONTINUOUS MERIDIANS
SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
REAL "UCsNUF

COMMON /PROPS/ HeDsHF yHCsEF s NUF s GF s EZ s NUC s GC s BF s DF 9 BC DC

ZOMMON /STMATS/ SEL{10+10)5B(12510)+D8(12910)4T(10910)

COMMON /ELGEOM/ R(U100)s2(10201)» ELsSPSI+CPSIy
1 TBIlsTBJ»CBI»C34,SBI4SBJsA)sA29A3,A4

30 100 J = 1s10

DO 100 K = 110

100 B(JsK) = Ceo0
IFIR(1)<EQ.0-0) GO TO 500
MATRIX FOR OPCN-ENDED ELEMENT

B(lsl) = Bl3+s2) = B{2,6) = 140
Bi7s4) = B(T7+5) = B(9,5) = 1.0
B(3s%) = B(8,10) = B(10s10) = 1a0
3(2+1) = B(8s4) = B(8,5) = B(10s5) = =140
Blayl) = -TBI

Blwsb) = TBI

Bl6s6) = TBI + TBJ

B{6s1) = = B(6+6)

B(S5s1) = B(69s6) + TBI

Bl3s6) = -B(5,41)

Bi5+2) = =-3,0

B(6s2) = 240

B(5s7) = 3,0

Bl{6s7) = =2,0

Bl{4s3) = B(6s3) = ~EL/CBI/(CBI
B(593) = -2,0%B(4,3)

Bl4ask) = Bl6s4) = HCEXR(4+3)/D
B(5s4) = -2,0%Bl4y4)

B(4s5) = B(695) = B(4e3)
B(535) = =2.9%B(445)

B(5+8) = EL/CBJ/CBJ

B(6+8) = -B(548)

B(5s9) = HC*3(5,8)/D

B(699) = —-B(5s97)

B(541G) B(5.8)

Blésl0) = =B(5,10)
DU 200 J = 1,19
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T(Jel) = CBI*B(Jel) + SBI#B(U,2)
T(Je2) = SBI*B(Jsl) ~ CBI*B(Jy2)
T(Je3) = B(Js3)

TtJead = BlJIe&)

T(Je5) = CBIRB(Js6) + SBUI¥B(UI,7)
T(Js6) = SBI%B(J46) = CBU*B(Js7)
T(Je7) = B(Je8)

T(Jes8) = BlJs9)

TtJe9) = BtJse5)

T(Js10) = BlJs10)

GO TO 1000

MATRIX FOR CAP

B(5s2) = -1la0

Bi6e6) = B(9+9) = B(9,10) = B(1l0,+10) = 1.0
Bt7+7) = 3,C

B(8s7) = ~-240

Bt6s2) = =CPSI

Bl7:2) = (2.0%TBI + TBJI®CPSI + 3,0%#SPSI
B(Bs2) = -Bt74+2) + TBI®CPS] + SPSI
B(7s6) = —-2,0%TBI - TBJ

B(8ys€) = T8I + T18Y

B{T7.8) = EL/CBJ/CRY

B(B8s8) = -Bt7+8)

B(7+9) = HC*B(7,8)/D

B(B8s9) = —-B(7+%)

B(7+10) = B(7+8)

B(8+10) =-B(7+10)

DO 7200 J = 1s10

T(Jel) = TUJe3) = TlJs&) = TUIs9) = 00
T(Jds2) = BtJs2)

T(JeSs = CBIRB(Js6) + SBU*B(Jy7)
T(Je6) = SBURB(Je6) - CBIEB(I,T)
T(Je7) = BlJe8)

T(Je8) = B(Je9)

T(Jel0) = Biusl0)

RETURN

END

SUBROUTINE BMATI(1,J))

THIS SUBROUTINZ EVALUATES THE MATRIX B8 FOR ELEMENT 1 AT POINT X(J)
SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
REAL NUF sNUC

COMMON /PROPS/ HaDeHF ¢HCoLF o NUF 9 GF 9 CCoNUZ 9 GCoBF 9DF 9 BCsDC

COMMON /XGEGM/ YPsYPP4RXyCOSBsYBAR

COMMON /ELGECM/ R(100)sZ2(100), ELsSPSIsCPSIy

1 TBIaT3JsCBIsCBIISRIZSBI»ALA2sA3 AL

COMMON /STMATS/ SFLI10510)93(12910)9DB(1291014T(10+10)

COMMNON /INTEG/ X{112)s¥W(10)

DO 1017 K 1,12

DO 100 L 1s10



100 BtKsL) = 040

Bl = -YPP®COSB##5%#(1,0 - YP#YP)/(EL®EL)
B3 = COSB##3/(EL*EL)
B2 = =2,0%YPP*YP*R3I#COSB#CO0SB

IFIR(1)4EQe0e0) GN TO 400
R4
B85 EL*B3#(SPSI + CPSI*YP)/RX
B6 = COSB*(SPSI + CPSI®#YP)/RX
MATRIX FOR OPEN-ENDED ELEMENT

-EL*R3%YPR(SPSI + CPSI*#YP)/RX

Bl2s1) = Bt7es1) = B{12s1) = SPSI/RX

B(2s3) = B(7+3) = R{12+3) = CPSI/RX

B(2s2) = Bt12s1)%x(J)
Bi2s4) = B(l2s3) %Xl )
Bl2s5) = B(2s4)%X(J)

B(2+s6) = B(2:5)1%#X ()

Btasg5) = B(9+10) = COSB/EL

B(ls2) = c0sSB#8(9,10})
Bllsa) = B(1ls2)%YP

Blls5) = 2.0%¥X(J)%3(144)

Blls6) = 1a5%X(J)#B(1,45)

B(3s7) = B(8s9) = 10

Bl3,8) = Bi3s10) = X(J)

B(4s2) = B(9+2) = Bl

Btass) = B(9+4) = B2

B{5+2) = B(10+2) = Ba

B(Se&) = B(10s&) = BS

B{3+7) = B(10+7) = B§

3(5e8) = B(1Ns17) = Bo#X(J)

Bl4ss) = B(9s5) = 240%B2RX(J) + 2.0%83
Bl4+6) = B(I96) = (3.0#B2#X(J) + 6.0#B3)%xX(J)
B(5+5) = B(10s5) = 2.0%#B5S%X(J)
3(5+6) = BU10+6) = 3.0#BSAX(J)%X(J)
B(65y2) = Bl1ls2) - D*R1/2.0

B(l11s2) = B(1+s2) + D¥B1/2.0

BlHss! = Bllsd) - DRR2/2,0

Bills%) = Bllss) + DR*R2/2.,0

Bl6s5) = B(195) - D¥B(495)/2.0

Bille5S) = B(EsS) + DRB(45)

Bl6s6) = Clle6) ~ DHB(B+6)/240

3(11+6) = Bl6s6) + D¥B(4e5)

RiBs: = —HC®B(4+8)/2.0
B(11,8) = =R(6+8)

Bl6e10) = =HFRB(4,8) /260
B(lls10) = =-R(6s1M)

B(742) = B(2+2 ~ D¥*¥B4/240
Bl1242) = B(T7+2) + D*84
B{7s4} = B(2+4) -~ D®B5/240
B(12+4) = B(7s+4) + D*BS
Bl7+5) = B(2+5) ~ D*B(5+5)/2.0
Bl12+5) = B(7+5) + D%¥B{595)
Bl7+6) = B(2s6) ~ D%B(5+6)1/240
B(1246) = B(7+6) + D®R(546)
Bl7+7) = -HC*B6/240

Bl12+s7) = =B(7s7)

B(7+8) =

B(7+7)%X{J)
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B(12,8)
B{7+9) =
B(12+,9)
B(7+10)
B(12,10)
GO 10 10

-B(7,8)
-HF*#B6/2,0
-B(7+91)
B(T7+9)%X(J)
= «-0(Ts10)
00

MATRIX FOR CAP ELEMENT

B6 = EL#(SPSI + YRAR®CPSI)

BS = COSB**3#(SPS] + YP¥CPSI)/(BRE*EL)

Ba = COSB*(SPSI + CPSI#YP)/B6

B(349) = B(8s10) = X(J)

B(4s9) = B(9s10) = COSB/EL

Bltasb) = B(Ge6) = |1 + TBI*B2
Bt4as7) = B(9+7) = 2.0%B2%X(J) + 2,0%B3
Btsa,8) = B(9,8) = (31e0%#B2%#X(J) + 6,0%2B3) %X ()
B(S5s6) = B(1l0s6) =RSX[((S5e0RALG%X(J) + 4o0OR (23 = AL)YEX(J) +
1 3.0%(A2 — A3)I%X(J) + 2,0%(Al ~ A2))
3(E97) = BllNs7) = 2.0%#85
B(538) = B{10+8) = 3.0#B5%X (J)
B(5,%) = 8(10+10) = B4

B(leb) = COSB*B(4,9)%(1e0+ TBIYP)
3(1s7) = 2.0%X(J)%COSBRB(4L,9)%YP

9 1s8) = 145%X{J)I%#3(1,7)

Bt2s6) = (SPSI + CPSI®*TBl)/B6

B8(2+7) = X{J)®RCPSI/B6

B(2,8) = X{J)#B(2,47)

B(6s6) = B(leb) — D*B(4s6)/2.0

B{11,6) = B(6+6) + DRB(4,+6)

Bi6s7T) = Blle7) = D%B(4s7)/240

BlIls7) = Bl6s7) + DE3(4,47)

B(6s8) = B{le8) — DRB(438)/24.0

B{11,8) = B(6,8) + D#R(448)

B{6s9) = —-HC*¥B(4+9)/2e0

Blll,2) = ~-B(6,9)

B(6+10) = -HF*B(4,9V/2,0

B(11,10) = =-Bl6s1lm)

B{7s6) = Bt2+6) —- D*3(596)/2¢0

Bl12,6) = 3(T7+6) + DRR(5,6)

3(7+7) = B(2+7) - D®BS

B(12s7) = Bi{2+s7) + D¥RS

Blr7+8) = B(2+8) — D*B(5+8)/240

B(12s8) = B(7+8) + D%¥R(5,8)

B(7+9) = —HC*B4/2,0

B{12+,9) = =B(7+9)

B(7s10) = =HF®B4/2,0

B{125s10) = -B{7s10)

RETURN

END
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SUBROUTINE PHITMAT(I1+4)

THIS SUBROUTINE EVALUATES THE TRANSFORM OF THE MATRIX PHI FOR
ELEMENT I AT POINT XItJ)

SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
REAL NUF sNUC

COMMON /PROPS/ HeDsHF sHC o EF s NUF s GF o ECoNUC s GC o RF s DF 4 RC o DC

COMMON /XGEOM/ YP,sYPP4RX»COSBsYBAR

COMMON /ELGEOM/ R(100)+Z2(100) ELsSPSI+CPSI
1 TBI«TBJsCBIsCBJSBI9SBJUsALsA2:A3A4

COMMON /ARRAY/ 5(4008)95T7(99+102)I8C{50)sRLI400)sRC(200)sU(990)
COMMON /INTEG/ X(12)sW(10)

COMMON /STMATS/ SEL{10s10)sB(12s10)+DB!12+s10)sT(10+10)

DIMENSION PH(10910+3)

EQUIVALENCE (PHU1)sU(1))

K=J4-=1

DO 100 M = 1410
DO 100 L = 153
PH{KsMsL) = 0e0

IFIR{I)1«EQ.0.0) GO TO 500
MATRIX FOR OPEN-ENDED ELEMENT

PH(Kslsl) = PH(Ks342) = 140
PH{Ks291) = PHIKs492) = X1 J)
PHtKs542) = X(JYRX(J)
PH(Ks692) = X{JIHPH(K9542)
PH(Ky293) = COSB#YP*COSB/EL
PH{K,493) = -COSB*COSR/EL
PH(Ks593) = 2.0%¥X({J)*#PH(K 4 3)
PH(Ks693) = 145%X(JIXPHI(K+543)
PH(Ks793) = -HC/D

PH(Ks893) = X{J)XPH(KsT793)
PH(Ks993) = —-HF/D

PH{K1093) = X{J)RPH[IK$9,3)

GO TO 1000

MATRIX FOR CAP

PHI{K45¢1) = ~CPSI

PH(Ks5+2) = SPSI

PHIKsb6s91) = X(J)

PH(Kys632) = X{J)*TBI

PH{Ks 792} = X{J)YRX({J)
PH{Kes822) = X(J)#*%3

PH(Ks693) = (YP ~ TBI)#COSB*COSB/EL
PH{KsT93) = =2,0%#X(J)*COSB*#COSB/EL
PHIKs893) = 1¢5%X(JIXPH(KsTs3)
PH(K+993) = =~HC®X(J)/D
PH{Ks10s3) = ~HF#X{J)/D
RETURN

END
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SUBROUTINE SELA(C)

THIS SUBROUTI!.E COMPUTES A TERM IN THE GAUSS INTECRATION FOR THE
STIFFNESS MATRTX IN GENERALIZED CO-ORDINATES

SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
REAL NUFsNUC

COMMON /PROPS/ HsDsHF sHCHEF s NUF s GF 4 EC s NUC 9 GC o BF yDF 9BC s DC

COMMON /STMATS/ SEL(10+10)sB(12+10)sDB(12+10)»T(10s10)

DO 100 K "= 1410

DB(1sK) = BCH¥(B(1eK) + NUCHB(24K))*C
DB(24K) = BCH*(B(2,K) + NUCHB(1sK))*C
DB(34K) = GC*B(3,K)*C

DBt4yK) = DCH*(Bl4yK) + NUCH¥B(54K))I#C
DB(5sK) = DC*(B(S5eK) + NUCH*BI(4K))%C
DBI64K) = BFR(Bl69K) + NUF#B(T75K))%C
DB(74K) = BF*(B(T74K) + NUF*B(64K))*C
DB(84K) = GF*B(ByK)*C*2,0

DB{9sK) = DF*{Bi9,X)+ NUF#BLl10sK))*C*2.0
DB(10sK) = DF*#(B(10sK)} + NUF®B(94K))*(¥*2,0
DB(11,K} = BF*(B(11sK) + NUF#B(124K))*C
DB(12+K) = BF#(B(12sK) + NUF*B(11,K))*C
DO 200 K = 1,10

DO 200 L = 1410

DO 200 M = 1412

SEL(KsL) = SELI(KsL) + BI{MsK)*¥DB(M,sL)
RETURN

END

SUBROUTINE STRESS

THIS SUBROUTINE EVALUATES THE MATRIX E#B*T AT THE NODES OF THE
ELEMENT FOR LATER CALCULATION OF THE STRESS RESULTANTS.,

SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
REAL NUF ¢NUC

COMMON /PROPS/ . HsDsHF sHCsEF s NUF 9GF s ECsNUC s GC s BF sDF s BC o DC

COMMON /STMATS/ SEL(10s10)+B(12520),DB(12s10)sT(10s10)

DO 150 1 = 1,10

DB(1sI) = BC*(Bl1sI) + NUC*B(2,1))
DB(2,1) = BC*(B(2+s1) + NUC*B(1,1))
DBt3,1) = GC*¥B(3,1) .
DB(4sl) = DC*(Bl4s1) + NUC*B(S,1))
DB(S541) = DC*(B(S5sI) + NUC*B(441))

DO 100 J = 541045

DB(J+1s1) = BF®¥(B(J+1y1) + NUF*B(J+2,1))
DB{J+2s1) = BF®*(B(J+2s1) + NUF*B(JU+1,1))
DB(8s1) = GF*B(8,1)

DB(9s1) = DF*(B(941) + NUF®B(10s1))
DB(10sI) = DF#(B(10s!) + NUF*B(941))

DO 200 I = 1,12

DO 200 J = 1,10

B(lsJ) = 040

DO 200 K = 1410
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B(Isd) = BllsJ) + DBUIsKI*T(KsJ)
RETURN
END

SUBRQUTINE SELR{L)

THIS SUBROUTINE TRANSFORMS THE ELEMENT STIFFNESS FROM GENERALIZED
TO GLOBAL CO-ORDINATES AND CONDENSES IT FROM 10X10 TO 8x8 USING
STATIC CONDENSATION.

SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG THORD LENGTH
COMMON /ELGEOM/ R(170)+2(100) ELsSPSIsCPSI
1 TBIsTBJsCBI»CBJsSBISBUsALSA29A3 AL

COMMON /STMATS/ SEL(10910)9B(12+s10)sDB(12410)9T(10s10)

SYMMETRIZE ELEMENT STIFFNESS IN GENERALIZED CO-ORCINATES

DO 50 I = 1,9

1=1+1

DO 50 J = 1J»10

IF(SEL(T+J)aEQeDeNeORGSEL(JsI)eEQe00) GO TO 45

SELUIsJ) = DeSRISEL(I4J) + SEL{J9i))

GO TO 50
SEL(Is+J) = 0.0
SEL(Js 1) = SEL(I4J)
TRANSFORM TO GLOBAL CO-CRDINATES
DO 100 I = 1,10

DN 100 J = 1,10
DB(IsJ) = D0
DO 100 K = 1,10

DBilsd) = DBUIsJ) + SELITISKI*T(KsJ)
DO 200 I = 1410

DO 200 J = 1,10

SEL(TIsJ) = 0.0

DO 200 K = 1410

SEL{TIsJ) = SELII»J) + TIKs[1%NB(KeJ)

IF(R(L)«NE«OeO) GO TO 250
SEL({1s1) = SEL(393) = SEL(&4s4) = SEL(F99) = 10
CONDENSE TO 8x8 ELEMENT STIFFNESS

DO 300 J = 1,2
1y =10 - J
IK = 1J + 1

PIVOT = SEL(IKsIK)
DO 300 K = 1s1J

C = SEL{IKeK)/PIVOT
SELUIKsK) = C

DO 300 I = KelJ

SEL(IsK) = SEL(IsK} -~ CESEL(IsIK)
SEL(KsI) = SEL(IsK)

RETURN

END
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SUBROUTINE 8(CS

THIS SUBROUTINE RFADS THE BOUNDARY CONDITION PATA, MODIFIES THE
OVERALL STIFFNESS MATRIX ACCORDINGLY AND THEN TRIANGULARIZES YHE
STIFFNESS FOR READY SOLUTION

SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
COMMON 7/ 7/ NNJNEJNLZ o NDOF ¢NBCsNRDINLESNLN,yPI

COMMON /ARRAY/ S(4004+8)35T(99,10+2)4+1BCI50)sRLI400)RC(200!sU(S90)
COMMON /ELGEOM/ R(100})s2(100), ELsSPSIHCPSIy

1 TBI4TBJsCBIsCBUsSBIsSBUsAL14A2,A3,AG

DIMENSION NR(4&)

NRD = 0O

IF{R({1)eNEeO«O) GO TC 10C
NRD = 3

iBC(l1y =1

IBCt(2)y = 3

IBC(3), = &

100 PRINT 2000
READ KINEMATIC CONSTRAINTS AND MODIFY OVERAI L STIFFNESS
DO 300 I = 1sNBC
READ 1001s Ns(NRUJ)»J=194)
PRINT 2C0ls Ns(NR(J)sJ = 194)
10 = 4%*N - &4
DO 300 J = 1+4
IF(NR(J) «EQe0) GO TO 300
NRD = NRD + 1
IK = 1J ¢+ J
IBCINRD) = IXK
S(IKsl) = 1.0
DO 200 K = 248
SU{IKeK) = ueO
L=1K=-K +1
IF(L.LELD) GO TO 200
SILsK) = 00
200 CONTINUE
300 CONTINUE
IFINRD«GT+ 50} GO TO 999
TRIANGULARIZE STIFFNESS MATRIX
CALL BANSOL(1+RL#Ss400+8sNDOFs8)
RETURN
999 PRINT 2999 sNRD
STGP
1001 FORMAT(5110)
2000 FORMAT(//59HOKINEMATIC CONSTRAINTS (0 = UNCONSTRAINEDs 1 = CONSTRA
1INED) /
2 6X3s4HNODE 95X s 10HMERIDIONAL 99X »6HRADIAL 9 7TX 9 BHROTATIONs
3 8XsTHWARPING/)
2001 FORMAT(I1lue4115)
2995 FORMAT(/////38HINUNSER OF CONSTRAINED DISPLACEMENTS =,14,
1 28H EXCEECS ALLOWABLE 50 STOP )
END
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SUBROUTINE LOADSI(1)

THIS SUBROUTINE READS THE LOADING DATAs INTEGRATES TO OBTAIN

THE CONSISTENT LOADSs REDUCES THE LOADS BY STATIC CCNDENSATION
AND ASSEMBLES THE OVERALLL LOAD VECTOR WITH MODIFICATION FOR K INE-
MATIC CONSTRAINTS,

SHEAR STRAIN AND CURVATURE MODELS VARY LINFARLY ALONG CHORD LENGTH
COMMON 7/ 7/ NNosNEJNLCyNDOF sNBEZsNRDoNLEsNLN P!

COMMON /ARRAY/ 3(40098)95T(9951092),IBCIS50)sRLLL0OD)4RTI200)sU(990)
COMMON /INTEG/ X{(12)4Ww(l0)

COMMON /STMATS/ SEL(10s10)9B(12510),DB(12510)5T{10s10}

COMMON /ELGEOM/ R(100)sZ2(100), FL9SPSICPSI,
1 TBI,TBJs»CBI+CBJ»SBI4SBUsAL14A2,A3 A0

DIMENSION P(10)sPV(11)sPRU10)s PH{1091093)9sP1(10)sP2(101sP3(1Ci s
1 CL(500)

EQUIVALENCE (P{1)4SEL{1))s (PRI1)4SELIYI1))(PV(1}sSELI2]1})
1 (PH({1)U(L1)) e (PIC1),UC301))y (P2(1)5U(311))y (P311)4Ui521))y
2 (CL(1),u(331))

LOGICAL LUL

REWIND 1

REWIND 3

N = NDOF/2

DO 50 J = 1:N

1J =N+ J

RL(J) = RL(IJ) = RCULJ) = 040

N = N/2 + NDOF

DO 60 J = 1N

CLLJY = 060

READ 1000s NLEsSNLNsLUL

PRINT 2000s I oNESNLESNLNsLUL

IF/NLE«EQ.0) GO TO 600

PRINT 2001

IT =1
DO 5006 J
DO 100 K
PR(K) = 00

READ VALUE OF DISTRIBUTED LC. iICDES OF LUADED ELEMENTS
IF(LUL+sANDeJGTel) GO TO 155

READ 1001y IEs(PV(K)yK=6511)

PREPARE TAPES FOR ELEMENT IE

IF(IE-TIT) 12091604140

N = 1T - 1E

DO 130 K = 1N

BACKSPACE 1

BACKSPACE 3

GO TO 160

N =1E - IT

DO 150 K = 1N

READ (1)

READ 3}

GO TO 160

IE = tE + 1

PRINT 2002+1Es(PV(K)K=6411)

INTEGRATE LOAD VECTOR OVER XI

READ (3) (CIPH({KsLoM)sM=193)9Lx1910)9K=1910)y (PLIK)sP2(K)sP3(K)

1sNLE
1,10
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K=14101)

DO 200 K 3 1.10

C = PltK)

YP = P2(K)

COS8 = P3(K}

PVI4) = PVI6) + X(K+1)#(PV(9) - PV(6))
PV(5) = PV(T) + X(X+1)®({PV(10) - PV(T))
PVI(1) = CRCOSBR(PV(4)Y + YP#PVY(5))

PV(2) = C*COSB®(*P#PV{4) - PV(5))

PV(3) = CH(PVI8) + X(K+1)®#(PV(11l) - PV(8})))

DO 260 L = 1.10
DO 200 M = 143
PRIL) = PRIL) + PH(K LM *PV (M)

TRANSFORM ELEMENT LOAD VECTOR TO GLOBAL CO—-ORDINATES

READ (1) ((T(MsL)sL=1+10)sM=1+10)

DO 300 K = 110
PLK) = 060
DO 300 L = 110

P(K) = P(K) + T(LeX)=®PRI(L)

Iy = 5#lE - 5

Cl = 2.0%PI*R(IE)

Ir(R(IE) «EGe0e0) C1 = 1e0

C2 = 2.0%PI*R(IE+Y)

DO 325 K = 1+4

IXK = 10 + K

CLiIKY = CLUIK)Y + P2(K)/C1

IK = IK + 5

CLIIK) = CLUIK) + P{K+4&4)/C2
CL{IJ+5) = CL(IJ+5) + P(9)/C1
CL(IJ+10) = CL(1J+10) + P(19)/C2
CONDENSE LOAD VECTOR 70O 8x1
DO 400 K = 142

Iy = 10 - K

JK =10+ 1

IK = UK - 8

DO 350 L = 1+1J

PI{L) = PIL) = STIIEsL»IK)I*P(IK)

FLJUK) = PLIKI/STUIES UK IK)

ASSEMBLE CONDENSED AND REDUCED LOADS
1J = 48TE - ¢

DO 450 K = 1,8

JK = 1J + K

RLEJK) = RLIJK) + P(K)

IK = 2#]E - 2

RCUIK+1) = P(9)

RC(IK +2) = P{10)

IT = 1E + 1

PRINT 20059 (JeCLIS®)=4)sCLIS%I=3) oCLUISHI=2)9CLISRJ=~1)sCL(5%J)>
J = 1sNN}

IFINLN.EQeD) GO TO 800

PRINT 2003

READ AND ASSEMBLE CONCENTRATED NODAL LOADS
DO 700 J = 1sNLN

READ 1002 Ns»(P{K)sK=143)

PRINT 2004sN» (P(K)»K=143)
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IF(R(N}<EQe0e0} PRINT 2900
RL(4%#N-3} 20#PI#P(1)*R(N) + RL{4¥N-3)
RL{4#N=-2) 2.0%PI#P(2)%#R(N) + RL(4%N-2)
700 RL(4%N-1)} 2:0%PIRP(3)*RIN} + RL{4%N-1)
MODIFY LOAD VECTOR FOR KINEMATIC CONSTRAINTS
800 CONTINUE
DO 900 4 = 1sNRD
K = IBC(J)
900 RL(K) = 040
IFIR(1)EQe0eD) RC(1) = 00
RETURN
1000 FORMAT(2110,L10)
1001 FORMAT(110s6F10.0)
1002 FORMAT(110s3F1Nne0)
2000 FORMAT(20H1LOADING CASE NUMBER 15/
1 5X»18HNUMBER OF ELEMENTS s 110/
2 5X925HNUMBER OF LOADED ELFMENTS »13~/
3 5X922HNUMBER OF LNADED NODES 16/
4 5X929HSAME LOADING ON ALL ELEMENTS L3/}
2001 FORMAT(STHODISTRIBUTED LOAD ORDINATES AT NODES OF ELEMENTS (IN PSI
1y 7/
2 8H ELEMENT+3Xs17THMERIDIONALs PS(I)sTXs13HRADIALY PZ(I)s7Xs
3 13HMOMENT s MS(1)s3X,17THMERIDIONALs PS(J)»7Xs13HRADIALs PZ{J)s7Xs
4 13HMOMENTs MS(J) )
4 13HMOMENT s MS(J) )
2002 FORMAT(18+6F2045)
2003 FORMAT(56HOCONCENTRATED LOADS AT NODES (PER uUNIT OF CIRCUMFERENCE)
174X s4HNODE s 6X s 14HMERIDIONALs PSs10Xs 10HRADIALY Pes10Xs
2 10HMOMENT, MS )
2004 FORMAT(I8s3F2045)
2005 FORMAT(//54HOCONSISTENT LOAD VECTOR (LOADS PER UNIT CIRCUMFERENCE)
17/10X9s4HNODE s 16X s4HP(S) 916X 4HP(Z) 9 16X 4HM{S) 5 14Xy 6HM(GAM) 313X
2 THM(GAMF) 7/ (11455E2048))
2900 FORMAT{77THOLOADING ON PREVIOUS NODE IGNORED (THEORY DOES NOT ACCOM
10D0ATE LOADS AT APFX) /)
END

SUBROUTINE SOLVE(I)

THIS SUBROUTINE SOLVES FOR THE NODAL DISPLACEMENTSs RECOVERS THE
CONDENSED DISPLACEMENTS, PRINTS THE ELEMENT DISPLACEMENTS AND
CALCULATES AND PRINTS THE NODAL STRESS RESULTANTS.

SHEAR STRAIN AND CURVATURE MONELS VARY LINEARLY ALONG CHORD LENGTH
REAL NUFsNUC

COMMON /PROPS/ HeDoHF sHCsEF ¢y NUF 3 GF s ECoNUIC s GC o RF 9 DF 9 BC NC

COMMON 7 7/ NNsNEJNLCoNDOF ¢NBC sNRD oNLE s NLNsP I

COMMON /ARRAY/ SU400+8)35T1(99410+2)s1BCI50)sRLI400)»RC(200),»U(990)
COMMON /ELGEOM/ R(100)+2(1001, ELWSPSTCPSI

1 TBI,TBJsCBIsCBJISBISBJsALIA2»A3,AL

COMMON /STMATS/ SEL(10s10)sB(1291C)sCBU12510)1sT(10+10)

DIMENSION SRI(21)9SRU{21)9ASR{1C0s21)



EQUIVALENCE (SRI(1)sSEL(1)})
SOLVE FOR NODAL DISPLACEMENTS
CALL BANSOL(2+RL9S5+40N0+84+NDOF,8)
. PRINT 2000, I
DO 300 J = lsNE
1y = 10%J - 10
(L= &) - 4
DO 1300 K = 1,8
IK = IL + K
JK = 1J + K
UEJKY = RL(IK)
RECOVER CONDENSED DISPLACEMENTS
IL = 2% - 2
DO 200 K = 1s2
JK K + 8
1K JK - 1
I1 1) + JK
M = IL + K
Utlily = RC(M)
DO 200 L = 1s1IK
M =1J + L
utrny = vl
COMPUTE
GAMCI
GAMCJ
CHISI
CHISJ
CHI1
CHIJ
300 PRINT

100

200 ~ ST Jsl s L)1 %U(M)
UtIJ+4) +
UtlJ+8) +
(HC*GAMCIT
(HC®GAMCY
UCIJ+3) + CHISI
UCIJ+7) + CHISY
2001 JoR(JY9Z(J)s

Ut1J+9)
Ut +10)
+ HF®U{1J+9))/D
+ HF®U(1J+10)) /D

2232

(SRJ(1)sSEL(31))

ADDITIONAL DISPLACEMENTS OF INTEREST AND PRINT

1 UGTJ+1)sUCTJI+2) sCHITSUCT U431y CHISTULTJ44)sGAMCIsU(TJ+9)
2 ULTJ+5)sU(T1J+6) sCHIU»ULTJ+T)e CHISJSULTII+8)sGANCIIUTI+10)

PRINT 20029 R(NN)sZ{NN)
PRINT 2003, 1
COMPUTE STRESS RESULTANTS AT NODES

DO 350 J = 1sNN
DO 350 K = 120
350 ASR(JsK) = 040
REWIND 2
DO 500 J = 1sNE
CALL RESULTS(J)
SRI(21) = SRJ(21) = 1.0E+10
IF(ABS(SRI(8))eGE41e0E=-16) SRI{21) = SRI(3)/SRI(3)
IF{ABS(SRJU(8))+GEs1e0E-16) SRJU(21) = SRJI(3)/SRI(8)
Cl = 045
C2 3 0e5
IF(JeEQel} C1 = 1,0
IF(J.EO.NE) c2 = 100
DO 400 K = 1520
ASR(JsK) = ASR(JsK) + C1%#SRI(K)

4N0 ASR(J+1sK)
SN0 PRINT 2004,
1

= ASR(UJ+1,4K)
JesRIUUYZ(J)
{SRI(K)sK=6+10)

2 JeR{J+1)92(J+]1)

3 ({SRU(K)

sK=6210)»

{SRJILK) sK=195}

+ C2%*SRJ(K)

(SRI(K)sK=1+5)0

(SRI(K)eK=11921)>

(SRU(K)eK=11921)



laNaNal
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PRINT 200y 1
IF(NLNsGT«0) PRINT 2008
PRINT 2007
DO 600 J = 1sNN
ASR(J»21) = 140E+10
IF(ABS(ASR(J98))eGEe1.0E-16) ASR(J»21)
600 PRINT 20069 JsR(J)9Z(J)»
1 (ASR(UJeK)4K=64101s (ASR(JsK)IsK=1451s (ASR(JsK}sK=11,421)
RETURN
2000 FORMAT (38HINODAL DISPLACEMENTS FOR LOADING CASE 13/
1 SH NODE+2X»13HMERIDIONALs Usb6X9s9HRADIAL Y Ws2X913HROTATIONy CHI»
2 9Xs6HCHI(B) s9Xs6HCHI(S) 93X s 12HWARPINGs GAMs7X 9 BHGAMMA (C) s 7X s
3 BHGAMMA(F) /)
2001 FORMAT(8H ELEMENTs13439Xs7TH{RsZ) =9 FIe491HysF9e4 /
1 4Xs1HI48E15.7/
2 4Xs1HJ98EL15.7/}
2002 FORMAT(S50XsTH(RsZ) =9F9abs1HssFTe4 )
2003 FORMAT(56HISTRESS RESULTANTS AT ENDS OF ELEMENTS FOR LOADING CASE
9 513/
17H  LAYER»16Xs4HN(S) 912XsBHNITHETA) 3 16Xs4HQ(S) 9 16X s 4HM{S) 912X
2 SHMUTHETA) »7X913HG(SsC)I/Q(SsF))
2004 FORMAT(8H ELEMENT»1348Hy NODE [931Xs7H{RsZ) =4F9ebplHssFFel /
TH TOP+5F20.8/
TH CORE$s5F2048/
TH BOTTOMsS5F20.8/
TH TOTALsSF20e84F20457
8H ELEMENTs13+8Hy NODE J931Xs7H(R$Z) =3F9eb91HssFFes /
™ TOP45F20.8/
™ CORE#5F20.8/
TH BOTTOMy5F20.8/
TH TOTAL95F20e84F20457)
2005 FORMAT(52H1AVERAGE STRESS RESULTANTS AT NODES FOR LOADING CASE »
9 1371
2006 FORMAT(SH NODE»sI4s41XsTH(R3Z) =¢F944,41HssFIe4y
1" 7TH TOP+5F20.8/
2 H COREs5F 20687/
3 7TH BOTTOMsSF2048/
4 TH TOTALWS5F20e8,4F204¢57 )
2007 FORMAT({
17H LAYER916Xs4HN(S) g 12XsBHN(THETA) 3 16X s4HQ(S) g 16X sLHM(S) 912X
2 BHM{THETA) 3 TXs13HQ(SsC)/Q(SsF))
2008 FORMAT(5Xs117HNOTEse AT NODES WHERE CONCENTRATED TRANSVERSE LOADS
1 OCCURs ELEMENT SHEAR-STRESS RESULTANTS ARE MORE ACCURATE THAN /
2 13X436HAVERAGE SHEAR-~STRESS RESULTANTS /)
END

ASR(Js3)/ASR(J8)

"

VDOV E WN

SUBROUTINE RESULTS(J)

THIS SUBROUTINE EVALUATES THE NODAL STRESS RESULTANTS FOR ELE-
MENT J

SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
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100

150

200

100

225

REAL NUF sNUC

COMMON /PROPS/ HsDsHF sHCoEF s NUF ¢ GF 4 ECoNUC s GC o BF o DF 3 BCo NC
COMMON /ARRAY/ S(400+8)35T(9951042)+18CI50)sRLLE4L00)YSRC(2CD)+U(990)
COMMON /STMATS/ SEL(10s10)sB{12s10)4DB(12510)sT(10+10)
DIMENSION SRI(21)sSRJUL21)

EQUIVALENCE (SRI(1)sSEL(1))s (SRJUI1)+SEL(31))

IJ = 10%J - 10

READ (2) ((B{KsL)sL=1410)13K=1512)

READ(2) ((DBUKsL)sL=1+10)9K=1412)

COMPUTE NODAL STRESS RESULTANTS IN THE LAYERS

DO 100 L = 112

SRI(L) = SRJ(L) = 0.0

CO 100 K = 1s10

IK = 1J + K

SRI(L) = SRI(L) + BULK)*U(IK}

SRJIL) = SRJI(L) + DB(LsKI¥ULIK)

DO 150 L = 3,15

SRI(LY = SRI(L-5)

SRJ'L) = SRJ(L-5)

COMPUTE THE TOTAL NODAL STRESS RESULTANTS
DO 200 L = 16420

SRI(L) = SRJ(L) = 00

DO 200 K = 19115

IK =K +L - 16

SRI(L) = SRI(L) 4+ SRI(IK)

SRJ(L) = SRJI(L) + SRU(IK)

SRI(19) = SRI(19) + 0.5%D*(SRI(11) - SRI(6))
SRIt20) = SRI(20) + 0.5%*D¥(SRI(12) - SRI(7))
SRJ(19) = SRJ(19) + 0.5*D*(SRJ(11} - SRJI(6))
SRJ(20) = SRJ(20) + 0.5%D*(SRJI(12) - SRJI(T))
RETURN

END

SUBROUTINE BANSOL(KKKs Bs A»s NDy MDs NNs MM)

SYMMETRIC BAND MATRIX EQUATION SOLVER

= 1 TRIANGULARIZES A

KKK = 2 SOLVES FOR VECTOR B»s SOLUTION VECTOR RETURNS IN B

PROGRAMMED BY Ce A« FELIPPA,

DIMENSION B(1)s A(NDsMD)
NRS = NN - 1

NR = NN

IF (KKK=1) 10051005200
DO 120 N = 14NRS
M=N-=1

MR = MINO(MMsNR-M)

PIVOT = A(N»l)

DO 120 L = 2sMR



110
120

200

220

320
400

C = A(NsL)/PIVOT

I =M + L

J =20

DO 110 K = LsMR
J=J+1

Allsd) = A(lsd) = CRA(NsK)
A(NsL) = C

GO TO 400

DO 220 N = 1sNRS
M=N-1

MR = MINO(MM,NR-M)
C = B(N)

B(N) = C/A(Ns1)

DO 220 L = 2»MR

I =M+ L

B(l) = B(I) - A(NsLI*C
B(NR) = B(NR)/A(NR,»1)
DO 320 I = 1sNRS

R = MINO(MMsNR-M)

0 320 K = 2sMR

L=M+ K

BIN) = BIN) = A(NSKI®R(L)
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APPENDIX E.e COMPUTER PROGRAM FOR FREE VIBRATION ANALYSIS OF ELASTIC AX]SYM-
METRIC SANDWICH SHELLS (FORTRAN 1V)

PROGRAM AXSSFVQ(UINPUTOUTPUTsTAPE1=INPUT»TAPE2=0UTPUT}

FREE AXISYMMETRIC VIBRATION ANALYSIS OF THIN ROTATIONAL SANDWICH
SHELL WITH CONSTANT THICKNESS AND TWICE CONTINUQUS MFRIDIAN.
MATERIAL PROPERTIES MAY NOT VARY IN THE MERIDIONAL DIRECTION FOR
THE PRESENT PROGRAMs ALTHOUGH MODIFICATION FOR THIS CAPABILITY
MAY BE READILY ACHIEVEDe NO RESTRICTION ON RATIOS OF LAYER THICK-
NESSFS OR LAYER PRNPERTIES, NODES ARE NUMBERED CONSECUTIVELY
ALONG THE “ERIDIAN AND IF A NODE IS LOCATED ON THE AXIS OF SYM-
METRY NUMBERING MUST REGIN AT THIS NODE. FLEMENTS ARFE NUMBERED
SUCH THAT THE ELEMENT NUMBER IS THE SAME AS THE SMALLER ADJACENT
NODE NUMBER.

STORAGE FOR 35 NODES (AND THUS FOR 34 ELEMENTS).

SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG THE CHORD LENGTHs RESPECTIVELY.

LR 2222222 2222322 2222222 R X222 2222222222222 SIS R L RS

DATA CARDS FOR AXSSFvQ
Ty LI 22y Ty P SR 2T YT T AR X TR L e S I T T T 2 T2 3

1 CARDee 110 NUMBER OF SHELLS TO BE ANALYZED
THEN, FOR EACH SHELL, ALL OF THE FOLLOWINGae

1 CARDese COLSe 2-72 TITLE

1 CARDes 3I110sL10 .
NUMBER OF NODESs NN
NUMBER OF MGDE SHAPES, NMS
NUMBER OF NODES WITH RESTRAINTSs NBC
ROTATORY INERTIA IMDEX (T IF LUMPED ROTATORY INERTIA
INCLUDEDy F DTHERWISE)

1 CARDese 6F10.0
THICKNESS OF 1 FACING (INe)
YDUNGS MODULUS OF FACINGS (PSI)
POISSON RATIO OF FACINGS
SHEAR MCDULUS OF FACINGS (PSI)
SHEAR STRESS CORRECTION FACTOR FOR FACING
DENSITY OF FACINGS (LBe/INNe%#3)
1 CARDse 6F1040
THICKNFSS OF CORE (1INg)
YOUNGS MADULUS CF CORE (PSI)
POISSON RATIO OF CORE
SHEAR MJDULUS OF CORE (PSI)
SHEAR STRESS CORRECTION FACTOR FOR CORE
DENSITY OF CORE (LBe/INe#%3)
{NOTEse SHEARING MAY BE NEGLECTED BY SETTING G TO 9999999999)

NN CARDSee [1993F1040
NODE NUMARER

aNaNaNaNaNaNa¥a¥aNaNaNaNANaNaNANANaNaNaNaNaNaNaNaNaNaNaNaNaVaNaNaVaNaNaNaNaNaNaNaVaaNaNaNaNaNaal
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OOy Oy

100
1000

228

Rs ABSCISSA OF NODE (INe)
Zs ORDINATE OF NODE (1INs)
PHI» LATITUDE ANGLE OF NODE (DEGREES)

NN-1 CARDSes 2F1040
CURVATURE AT NODE 1 OF ELEMENT (1/INs)
CURVATURE AT NODE J OF ELEMENT (1/1Ns)

NBC CARDSe.. 5110
NODE NUMBER
TANGENTIAL DISPLACEMENT INDEX (0=FREEs 1=CONSTRAINED)
RADIAL DISPLACEMENT ...DEX ( DITTO }
BENDING ROTATION INDEX ( DITTO )
SHEAR WARPING INDFX ( DITTO )

LOGICAL LRI

COMMON / /7 NN-NEJNMSsNDOF ¢ NBCyNLMoLRIsPI
Pl = 3,14159265358979
READ 100Cs NSHELLS

DO 100 N = 1,NSHELLS
CALL SETUP

CALL BCS

CALL EIGEN

IFINMS«NE-D) CALL SHAPES
CONTINUE

FORMAT(110)

STOP

END

SUBROUTINE SETUP

THIS SUBROUTINE READS THE GEOMETRICAL AND MATERIAL PROPERTIES OF
THE SHELL AND SETS UP THE OVERALL STIFFNESS MATRIX AND THE DIAGON-
AL MASS MATRIXs BOTH UNMODIFIED FOR BOUNDARY CONDITIONS.

SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTHy RFSPECTIVELY.

REAL NUF s NUCsKF 9KC

Lt OGICAL LRI

COMMON / / NNsNEsNMSoNDOF ¢+ NBCsNLMoLRI»PI '

COMMON /ARRAY/ S(140+8)9S5T (3445312541 +XM(140)3A(10%55105)1,E(105)

1 VI10551C5)51VI105),0UM(140)

COMMON /PROPS/ HeCoHF ¢ HCyEF 9 NUF 4 GF 4 EC o NUCKCC o BF s F 4B C

COMMON /XGEOM/ YPsYPP4RXsCOSBeYBARGX(10)

CCMMON /ELGEOM/ ELSPSIsCPSITBI»TBJUsCBIsCBJUsSBI+SBUsAL9A20A34AL
CCMMCN /NODCEO/ R{3514,2(35) '

COMMON /STAATSZ SEL(12s12)+B112+12)+D8B11291219T(12512)

DIMENZION CPHI(35)9SPHI(35)sW(10)sY{10)sWMIL10)sAN(35)sPHI(35)
ESUIVALENCE (CPHI(1)9A(1))s (SPHI(1)4A(101))s (PHI(1)eA(201))

1 (ANI1)sAL301))

CATA Xx 7/ DeN13046T35T741414,s 06067468316655507,

1 741617275215850488, 04283302302935376, 0+425562830509184,



100

2 0e574437169490816s 04716697697064624» 0e839704784149512,
3 0e532531683344493, 0,986953264258586 /
DATA W / 0e066671344308688s 04149451349150581
1 042°9086362515982y 04269266719309996 02955242264714753,
2 04295524224714753, 04269266719309996s 04219086362515982,
3 0e1¢9451349150581s 0.066671344308688 7/
DATA Y /7 0e023455038515334y 0+115382672473579
1l 04253 0384617327526421s 064T76544961484666s 064523455038515334,
2 04615382672473579s 04759 0e8846173275266421s 04976544961484666 /
DATA WM/ 0236926885056189, 0,478B628670699366,
1 0.568888888888889, 0,478628670499366» 04236926885056189,
2 0.236926885056189, 0.478628670499366y 0.5688R3888888889,
3 0.4T786286704993669 04236926885056189 7/
WRITE (2+2C00)
READ (1,1000)
WRITE (2+1000)
READ (151001) NNsNMSyNBCsLRI
READ (191002) HF sEF s NUF s GF 4 KF s RHOF
READ (141002) HCsECsNUCsGC yKCyRHOC
WRITE (2+2001) NNpNMSyNBCy HFyHCe EF 4NUF 9GF 4KF 9 RHOF s ECsNUC sGCoKCy
1 RHOCs LRI
IF{NNeGTe 35) GO TO 900
I1F(GF «GE ¢9999999998,0) GF
IF(GCeGE9999999998.0) GC
H = HC + 240%HF
D = HC + HF

1.0E+20
1.0E+20

NE = NN - 1
NDOF = 4#%NN
NLM = 2%NN

IF(LRI) NLM = 3%NN

EF = EF/(140 - NUF#NUF)
EC = EC/(140 ~ NUC*NUC)
BF = EF#HF

BC = EC*HC

GF = GF *HF*KF

GC = GCR*HCHKC

DF = BF*HF*HF/12.0

DC = BC*HC*HC /1249

RHO = (HC¥RHOC + 2,N*HF*RHOF) /3864088
AMOM = (RHOC*HC®#%#3 4+ RHOF*(H#®#%#3 — HC*#3))/(12,0%#386,088)
DO 100 I = 1.NDOF

XH1) = 0.0

DC 100 J = 1.8

S(Isd) = 240

JK = 0

WRITE (2,2002)

DR = 180.0/P1

DO 110 1 = 14NN

AN(1) = 0.0

READ (151003) IsR(IIsZ{1)sPHILI)
WRITE (252003) TsR(I)sZ(1)sPHILI)
PHI(I) = PHI(I)/DR

SPHIC(L) SIN(PHItT))

CPHIC(T) COS(PHI(I))

WRITE (252004)
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150

200
400

DO 500 I = 1sNE
DR = R{I+1) = R(I}

Dz 2(1+1) - 2(1)

EL = SQRT(DR*DR + DZ#DZ2)

SPSI = DR/ZL

CPSI = DZ/EL

SBI = CPHI(1)#CPSI - SPHI(I)#SPSI

CBI = SPHI(I1)*CPSI + CPHI(1)%#5PS]

T8l = SBl/CBI

SBY = CPHI(I+1)*CPSI -~ SFHI(1+1)%#SPSI
CBJ = SPHI(I+1)#CPSI + CPHI(1+1)#SPSI
TBJ = sSBJ/CBY

READ (1s1004) CURVIsCURVY

WRITE (2+2005) 1+CURVIZCURVISELsSPSILCPSIeTRIZTRY
YPPl = ~EL®#CURVI/CBI*%3

YPPJ = ~EL#CURVJ/CBJI%»3

Al = TBI1

A2 = TBI + 0.5%*YPPI

A3 = —(5.0%TBI + 4.0*TBJ) + 0.5%YPPJ - YPPI
A4 = 3,0%(TBI + TARJ) + 0«5%(YPPI - YPPJ)

DC 150 J = 1,12

DO 150 K = 1,12

SEL(JsX) = 040

COMPUTE ELEMENT TRANSFORMATION MATRIX (A%%®—))xT

CALL TMAT(D)

DO 400 J = 1,10

YBAR = (1e0 ~ X(J)I®(ALl + X(JI®(A2 + X{J)*(A3 4+ X{J)*A4)))

YP = Al%(16e0 — 24N#¥X{J))+ X{JIR(A2% (2,0 — 3.0%#X{(J)) + XUJ)®(A3*
1 (340 = 4e0%X(J)) + AGRX(J)I* (440 = 5,0%X(J))))

YPP = 2.0%(=A1 + A2%(140 = 3.0%X(J)))1+ X(J)*(A3R{640 = 12.0%X(J))
1 4+ A4%X{JI*(12.0 = 200%X(J))Y)

RXx = RUI) + X(J)®EL*(SPSI + YBAR®*CPS])

COSB = 140/{SQRT(140 + YP®*YP)}

EVALUATE St(s} AT INTFGRATION POINTS

CALL BMAT(I.J)

ADD CONTRIBUTION TO ELEMENT STIFFNESS INTEGRATION

C = PI#E' *RX*W(JY /COSB

CALL SELA(C)

YBAR = (1e0 - YUIUN)#[AL + Y{U)R(A2 + Y(IIR(A3 + Y(J)*A4)))

VD = Al%(140 = 240%Y(J))+ Y(JI*¥(A2%(240 ~ 3,0%Y(S)) + Y(J)#(A3*
1 (360 = 4o0%Y(J)) + AGEY(J)*({6G.0 = 5,0%Y(J))))

RX = R(I) + Y(J)®EL*(SPSI + YBAR#CPSI)

COSB = 140/1SART(1.0 + YP*YP))

C = DI%EL*RX*WM{J)/COSB/240

IF(JsGTe5) GO TO 200

AN(I) = AN(I) + C

GO TO 400

AN(I+1) =AN(I+1) + C

CONTINUE

TRANSFORM 12x12 ELEMENT STIFFNESS TO GLOBAL CO-ORDINATES AND CON-
DENSE TO 8x8

CALL SELR(I

STORE MULTIPLIERS AND PIVOTS

DO 620 J = 1.4

1 =J + 8
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DO 420 X = 112
420 ST(I+Ked) = SELII1JsK)
ADD 8X8 ELEMENT STIFFNESS TO OVERALL STIFFNESS
DO 450 J = 1.8
1 = JK + J
DO 450 K = J
IK =K - J +
450 S(1Js1K) = §
500 JK = JK + 4
CONSTRUCT DIAGONAL MASS MATRIX
DO 600 I = 1sNN
10 = 4% - 3
YXMETJ) = XM(IJ+1) = SQRT(RHO®AN(I))
IF{«NOT<.LRI) GO TO 600
XM{IJ+2) = SQGRT(AMOM*ANI(]))
600 TONTINUE
RETURN
900 WRITE (2+2900)
_Toe
1000 FURHAT(T72H
1
1001 FORMAT(3110,L10)
1002 FORMATI(6F10,0)
1003 FORMATI(I10+3F10.0)
1004 FORMAT(2F10,0)
2000 FORMAT({1H1)
2001 FORMAT(10X+28HNUMBER OF NODES s 13/
10X+ 2BHNUMBER OF MODE SHAPES ' 13/
10X 28HNUMBER OF RESTRAINED NODES s 137/
10Xe16HFACE THICKNESS =4F1046/
10X9 16HCORE THICKNESS =+F10e6//
10Xs8HFACE E =+F134l/
10Xs IHFACE NU =9F124,5/
10X ,8HFACE G =9:-13e1/
10Xs 10HFACE KAP =,F1145/
10Xs 10HFACE RHO =4F1146//
10X+48BHCORE F =9F1341/
10X+ 9HCORE NU =4F12,5/
10X+8HCCRE G =9F1341/
10X 10HCORE KAP =4F11e57/
10Xs 10HCORE RHO =4F11467/
44H ROTATORY INERTIA INCLUDED (T = YESs F = NO) L5 //
45H ALL QUANTITIFS IN INCHESs POUNDS AND SECONDS /)
2002 FORMAT(//11HONODAL DATA /
9 2X s 4HNODE 9 7X 9 11HABSCISSAs Rs8X912H ORDINATEs 246Xy
1 14HULATITUDE ANGLE?/
2 15Xe5H{INe) 915X s5H({TNe)s13Xs8H(DEGREE) /)
22N3 FCORMAT(:4+3F20.8)
2004 FORMAT(/1BHOELEMENT GEOMETRY /
1 BH ELEMENT10XsTHCURVITI)3s10Xs THCURVIJ) 95X 912HCHORD LENGTH¢ 10X
2 THSIN PSI»10Xs7HCOS PSIs6Xs11HTAN BETA(I)+6Xs11HTAN BETALY) Y/
3 18Xe7H(1/INe) 9lO0Xs7THI1/INs)912XeBH(ING))
2905 FURMATUIBs7F17.8)
29N0 FORMATL(/////741HONUMBER OF NODES EXCEEDS ALLOWARLE STOP )
END

1]
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SUBROUTINE TMATI(I)

THIS SLLROUTINE EVALUATES THE CO~CRDINATE TRANSFORMATIOM MATRIX
(Ax%-1)#T FOR CLEMFNT 1. .
GLOBAL CO-ORDINATES ARE S AND X! (MERIDIONAL AND “ACIA_.» AND
THUS CAN BE APPLIED ONLY TO SHELLS WITH TWICE CONTINUOUS MERIDIANS
SHEAR STRAIN AND CURVAJRE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTHs RESPECTIVELY,

REAL NUCsNUF

COMMON /2ROPS/ HsDsHF sHCsEF s NUF s GF sECsNUCsGC9BF s DF s BCo DC

COMMON /STMATS/ SEL(12912)9B(12912)sDB(1%912)9T(12s12}

CCMMON /NODGEO/ R(35)42(35)

COMMON /ELGEOM/ EL sSPSIsCPSI+TBIsTBJsCBIsCBJUsERI2SBIIAL1IA2,A30A4
DO 100 J = 1s12

DO 100 K = 1s12

Bl{JsX) = 040

IF(R(I)eEQe0s0) GO TO 500

MATRIX FOR OPEN-ENDED ELEMENT

B{lel) = B(342) = B(2:+67 = 140

B(744) = BtT7:5) = Bl{9s5) = 1,0

B(8y9) = B(8,10) = B(10s10) = B(2y1) ~ ~140
Bt4s1) = -TBI

B{us6) = TBI

Btés6) = TBI + TBY

B(6s1) = — B(64+6)

Bi{54s1) = Bl6+6) + TBI

B{5s6) = —B(541)

B(5+2) = B(Bs4) = B(8s5) = Bt10s5) = =3,0
Blb6s2) = Blllys4) = B(11s5) = B(12s5) = 240

Bt11,9) = B(1l1ls10) = B(12:10) = 2.0
B(5+7) = 340

B(6s7) = =-2.,0

B(8y11) = B(10s12) = 440

Bllls11) = B(12+12) = =440

B(4s3) = B(Hs3) = «EL/CB1/CBI1
Bi593) = =?2,0%B(4,3)

Blbsth) = Blbat) ~ HCHB(L4y3) /D
Bi5ys4) = =2,0%B(444)

Bl4s5) = B(6s5) = Blaus3)

B(S5s5) = =2,0#B(445)

B(5+8) = EL/CBJY/sCBY

Bl6+8) = —-B{5,48)

B(549) = HC®*B(54+8)/D

B(6+9) = ~8(5,9)

B(5+10) = B(3,8)

B(6s10) = =B(5,20)

DO 200 J = 1912

TtJsel) = CBI*B(Js1) + SBI*B{JUy2)
T(Je2) = SBI*B(Jel) ~ (BI*B(Js2)
T(Js3) = B(Js3)

TiJes) = BlJss)

T(JsS) = CBI*B(Jeb) + SBI¥B(J,7)
TiJe6) = SBURB(Je6) -~ CBI%*B{Js7)
T(Js7) = B(Js8)

T(Je8) = B(Js9)

T(Js9) = B(Js5S)
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TtJs10) = B(J+20)
T(Jell) = B(Jsll)
200 T(Je12) = B(Je12)
GO TD 1000
MATRIX FCR CAP
500 B(5+2) = -1l00
B(9+9) = B(9+10) = B(10510) = =140
Bt6s6) = 1.0
Bt7+7) = 340
3(11,9) = Bllls10) = Bl12510) = 2.0
Bi8s7) = -2,0
B(9s11) = B(10+12) = 4,0
B(1le1l) = BU12+12) = =440
B(6s2) = —CPSI
B(7s2) = (2,0%#TBI + TBJ)=CPSI + 3,0%SPSI
B{Rs2) = =B(7+2) + TBI®CPSI + SPSI
B(T7+6) = —-2,0%TBI - TBY
B(8s5) = THBI + T8HY
8(7+&) = EL/CBJ/CBY
B(8+8) = -B(7,+8)
Bt7,9) = HC#B(7+8)/D
B{(8+9) = —-B(T+9)
B(7+10) = B{7.+8)
B(8+10) =-B(7,10)
DC 700 J = 1s12
TiJsl) = TtJe3) = TlJIe&]l = TUJe9) = 040
TtJs2) = B(Js2)
T(JsE) = CBURB(J96) + SBIRBLI,T)
T(Js5) = SBIRB*Je6) -~ CBIEB(J,T)
T(Je7) = B(Js8)
T(JeE) = BlJeD)
T(Js2Q) = B(JL10)
TtJell) = BlJIs1il)
TCO T(Jel2) = BlJe12)

1000 RETURN
END

SU3ROUTINE BMAT(I,J)

THIS SURRDUTINE EVALUATES THE MATRIX B FOR ELEMENT T AT POINT X(J)
SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG THCORD LENGTH, RESPECTIVELY,

REAL NUFsNUC

COMMON
COMMON
COMMON
COMMON
COMMON
00 1nC
DC 10C
160 B(KsL)

/PROPS/ HeDsHF yHC s EF 9 NUF s GF s ECoNUC s GCoEF oDF 4 Co DC
JSTVMATS/ SEL(12+12)561(12+12),08(12512)9T(12412)

7ELGEQM/ EL sSPSIsCPSI»TBI»TBJsCBIsCBJsSBIvSRIsALsA29A3 AL
/NCDGEO/ R(35)4,2(35%5)

/XGED1/ YPoYPPRX»(0SB»YBAR+X(10)

K = 1e12

L= 1s12

= 040

233



81 = -YPP®LOSB##58(1,0 ~ YP#YP)/(EL®EL)
B3 = COSB##3/(EL*EL)

B2 = =2.0%YPP#YP#R3*COSB#COSB
IFIR(1)eEQe0.0) GO TO 400

B4 = -EL#B3%#YPR(SPS] + CPSI#YP)/RX

BS = EL®*B3%(SPSI + CPSI*YP)/RX

B6 = CCSB*(SPSI + CPSI®#YP)/RX

MATRIX FOR OPEN-ENDED ELEMENT

Bt2,1)
B(2+3)
Bi2s2
R 254)
B(2,5)
B(2.6)
Bltasb)

" nnonnNn

Btas11) =

Blle2?
B(ls4)
B(1ls9)
A(ls6}
B(3,7)
B(3,g)
B(3,11) =
Blas2)
Bluss)
5(5,2)
BtSes:?
B(5s7)
B(5+8)
Bi5s11) =
Bl(4s5)
Blas6)
B8(5»5)
3(5+6)
B{6s2!
8(11+2) =
Blosa) =

B11Ils4) =
B(6+5) =

3(11,5) =
Bl6s6! =

8{11+€) =
B(6s8) =

Bt1lle8) =
B{és1D) =
Btll,10)

3(6s11) =
811,11}

Bl6s12) =
At11,12)

B(7+2) =

A(1242) =
B(7e4) =

B(12,4) =
B(7+5) =

N onn

[ I I TR
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B(7+1) = B(12s1) = SPSI/RX

B(7+3) = Bt12+3) = CPSI/RX
Bli2s1)8X(J)
Br12+3)%X(J)

Bl2s4)%X(J)

Bt2+51%X(J)

Bt9+10) = COSB/EL
Bt9+12) = 2.0%X{J)¥B(4,+8)

COSB*B(9,10)

Blls2)%YP

240%X{J)%B(1,44)

145X (JI¥A(145])

B(85s%) = 1.0

B(8s10) = X(J)
BiBs12) = X(J)EX(J)

B(9,2) = Bi

B(9+4) = B2

B(10+2) = Ba

B(l0s4) = BS

BilnN.9) = B6

Bt10s3:0) = B6=x(J)
B(10,512) = X{J)*B(5.8)

B{9s5}) = 2.0%82%X(J) + 2.0%B3

B(9+6) = (3.0%B28X{JS) + 6.,0%B31%X(J)

B(10sS) = 2.0%B5%X(J)
B(10+6) = 3.0%#354X{J)%X(]))

B{l+2) - D*B1/2.0
B(1s2) + D#B1/2,0

Bl{ls4) - D*B2/2.0
Blls4) + D®B2/2,.0

B(1s5) - D*Bl4s5i /240
Bl6s5) + D®B(4,+5)

Blls6) - D*B(4e6) /2.0
Bl6s67 + DRA[44€)

~HC*R(4+8)/240
-3(6+8)
~HF#3(4+8) /2,0

= -Bt6sl0)
2.0%X(J)2B(6+8)

= =-Bl6s1l) .
2.0%X(J)#B3(6+10)

= =3l6+12)

B{24+2) - D*B&4/2.0
B(7+2) + D®*R4

Bi{2+s4) - D*BE/2,0
B(T+4) + D*B5

3(2+5) - D®B(5+5)/2,.0
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B(12+s5) = B(7+5) + DRB(545)
B(7+6) = Bl2s6) — D*B(5+6)/240
B(12+6) = B(T+6) ¢+ DB(5:6)
Bl7+7) = -HC®B6/240

Bt12+7) = =B(7s7)

B(7+8) = B(Ts7)%X())

B(12+8) = ~B(7.8)

B8(7+9} = -HF#%#B6/2.0
Bt12+9) = =B(7,9)
B(T7+10) = B(T7+9)%X(J)

Bt12,10) = -B{(7+10)
B(7s11) = X(J)I®B(7,8)

Bl12s11) = ~B(Ts11)
B(7+12) = X(JI®B(7,10)
B(12+,12) = -B(7s12)

GO TO 1000

MATRIX FOR CAP ELEMENT

400 B6 = EL*{5SPSI + YBAR®CPSI)
BS = COSB#®3%(SPSI + YP®CPSI)/(B6®EL)
B4 = COSB#*(SPSI + CPSI#YP) /66

B(3s9) = B(8,10) = X(I)

B(3s11) = B(8s12) = XxX(J)I®EX(J)
Bt4asS) = B8(9+10) = COSB/EL

Blasll) = B(9+12) = 2.,0%X(JI1*B(4,9)

Blasb) = B(996) = 81 + TBI®*B2

Bl4s+s7) = B(9s7) = 2.0%*B2#X(J) + 2,0%B3

R(4s8) = B(9+8) = (30%B2%X(J) + 6,0#83)#x())
B{Ss6) = Bl10+6) =BSH{ ({SeCRAL¥X(J) + 4L0%(AT = AL))%X(J) +
1 2.08(A2 - A3))¥X(J) + 2.0%(A]1 - A2))

B(5+7) = B(10+7) = 2.0%85

Bi5s8) = B(10+8) = 3.0%B5#X(J)

B{5+9; = B(10+1C) = B4

BiSs11) = BL10s12) = X{J)*B4

B(ls6) = COSBRB(4,2)%(1e0+ TBI*YP)
B(le7) = 2.0%X(J)RCOSR*B(4+9)*YP
S(1e8) = 1eS5®¥X(IINT(1,7)

3(2+6) = (SPSI + CPSI*TBI)/E6
B(2s7) = X(J)®CPSI/B6

3(2+8) = X(J)*B(247)

Bt6+6) = B(ls6) - D*3(4+6)/2.0

B(11+6) = B(6s6) + D*B(446)
Bt6s7! = Blle7 - D#B(&4sT)/240
Blils7) = Bi6sT) + DER(44T)
B(698) = B(1s8) — D#B{44+8)/2.0
Bl11s2) = Bl6+8) + DRB(4,48)

Bl6s9) = ~HC*B(4+9)/2.,0
B{1l1l+9) = =B(6+9)

Bt6s10) = =HF%#B(4,9)/2,.,0
B{ll,s10) = -B(6s10)
Bl6s1l) = 2.,0%X(J)#B(6,+9)
Btllyell) = -B(6s11)

Bl6sl2) = 2,0%¥X{JI#B(6,10)
B(1lls12) = -B(6+12)

BlT746) = B(2+6) — DRB(5+6) /240
B(12s6) = B(736) + D®B(546)
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B(T7s7) = Bl(2+s7) -~ D*B5

B(12,7)
B(7+8) =
B(12+8)
Bt7+9) =
B112,9)
B(7+10)
B(12,10)
B(7.11)
B(12,11)
B(7+12)
B(12,12)
RETURN
END

Bt2+s7Y ¢+ D#BS

Bt2+8) —~ D*B(5+81/240
= B(7+8) + D*B(5+8)
-HC*B4/2,0

-B(7+9)
-HF %84 /240
-B(7+10)
X(J)*B(T7+9)
-B(7s11)
X{J)Y®B(7,10)
-B(7+12)

SUBROUTINE SELAI(C)

THIS SUBROUTINE COMPUTES A TERM IN THE GAUSS INTEGRATION FOR THE

STIFFNESS MATRIX IN GFNERALIZED CO-ORDINATES

SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY

ALONG CHORD LENGTHs RESPECTIVELY,

REAL NUF yNUC

COMMON /PROPS/ HsDsHF sHCsEF s NUF s GF 9 EC s NUC s GC9BF o DF »BCo DC
COMMON /STMATS/ SEL(12912)sB(12912)sDB(12412)9T(12512)
DO 100 K =

DB(1+X)
DR(2,X)
DB(3,K)
DB(4yX)
DB(5,K)
DBt6sX)
D3(7,X)
DB(8,4K)
DB(9+X)
DB(10+X)
DB(il1sK)
0B8(12+XK)
CO 200 K
DO 200 L
DO 200 M
SEL{KsL)
RETURN
END

| I { Y TN | T B L B}

1+12
BCH{B(1sX) + NUCHB(2:X}))%C
BCH*(B(2oX) + NUCHR(1,X!)%C
GCH*B(3,X)%C
DCE(BlGoK) + NUCRB(5+K))%C
DCR(B(5eK]) + NUCH#B(44K))%C
BF®(B(6esX) + NUF®B(7,X))%C
BFE(B(74K) + NUFXB(69K))®C
GF#B(8,K)®*C*2.0
DF*(B(9eX)+ NUF*B(10sK))I#CR2.,0
DF#(B{10sK) + NUF®RB{S () )#CH2,0
BF#(B{11sK) + NUF®B({]1 '9yK))*C
BF#(B(12sXK) + NUF%B(114K))%C
1912
1,12
1012
SEL{KsL) + B(MX)XDB(M,L)
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SUBROUTINE SELRI(L)

THIS SUBROUTINE TRANSFORMS THE ELEMENT STIFFNESS FROM GENERALIZED
TO GLOBAL CO-ORDINATES AND CONDENSES IT FROM 12X12 TO 8X8 USING
STATIC CONDENSATION.

SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTHs RESPECTIVELY.

COMMON /NODGEO/ R(35)42(35)

COMMON /STMATS/ SEL(12512)sB(12012)+0B8(12912)eT(12+12)

SYMMETRIZE ELEMENT STIFFNESS IN GENERALIZED CO-ORDINATES

DO 50 I = 1»s11

1d=1+1

DO 50 J = 1Js12

IFISELI] 92 eEQeQe0eORSEL (JsI1)eEQe0e0) GO TO 45

SEL(IsJ) = 0eS®ISEL(IsJ) + SEL(JeI))

GO TO 50
SEL(IsJ) = 0.0
SEL(JsI) = SEL(Is))
TRANSFORM TO GLOBAL CO-ORDINATES
DO 100 I = 1912
00 100 J = 1,12
DBtIsJ) = 0.0
DO 100 K = 1,12
DB(1eJ) = DBUIsJ) + SELII sK)I*T(KeJ)
DO 200 I = 1s12
DO 200 J = 1s12
SEL(IsJ) = 0e0
DO 200 K = 1sl2
SEL(IsJ) = SELUIsJ) + T(K»I)*DB(KeJ)

IF(R(L)«NEO+0) GO TO 250

SEL{1+1) = SEL(3+3) = SEL(494) = SEL(959) = 140
CONDENSE TO 8x8 ELEMENT STIFFNESS

DO 300 J = 1e¢4%

1 =12 - J

IK = 1J + 1

PIVOT = SEL(IK,IK)

DO 300 K = 1s1J

C = SEL(IKsK)/PIVOT

SEL(IKsK) = C

DO 300 I = K»slJ

SEL(TsK) = SEL(IsK) = CH*SEL{I,4IK)
SEL(KsI) = SEL(IsK)

RETURN

END

SUBROUTINE BCS

THIS SUBROUTINE READS THE BOUNDARY CONDITION DATAs MODIFIES THE
OVERALL STIFFNESS MATRIX AND MASS MATRIX ACCORDINGLY AND THEN
TRIANGULARIZES THE STIFFNESS FOR READY SOLUTION,

SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTHs RESPECTIVELY,
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LOGICAL LRI
COMMON / / NNoNEsNMSoHDOF sNBCeNLMyLRISPI
COMMON /ARRAY/ S(140,8)sST(34s12:4)¢XM{140)3A(1059105)+E(105)>
1 V(105+105)s1VI105)sW(140)
COMMON /NODGEO/ R(35)4+2(35)
DIMENSION NR(4)
IF{R{1)eNEeO«O) GO TO 100
NLM = NLM =1
XM(1l) = 0.0
1IF{«NOT.LRI) GO 19 100
NLM = NLM - 1
XM(3) = 0.0
100 WRITE (2+2000)
READ KINEMATIC CONSTRAINTS AND MODIFY OVERALL STIFFNESS AND MASS
DO 300 1 = 1sNBC
READ (1s1001) NsI{NR({J)sJ=1s4)
WRITE (2+2001) Ne(NR(J)»J=144)
IJ = «%N - 4
£O 300 J = 1s4
IF(NR{J)eEQe0)Y GO TO 300
IK = 14 + J
S(IKel) = 1,0
DO 200 K = 248
S{IKeK) = 0.0
L=IK-K+ 1
IF(LsLESO) GO TO 2245
S{LsK) = 040
200 CONTINUE
IF(JeEQes) GO TO 300
IF(JeEQe36AND 4o NOTLLRIIGO TO 300
NLM = NLM - 1
XM{IK) = 0,0
300 CONTINUE
IF {(NMS.GT.NLM) NMS = NLM
TRIANGULARIZE STIFFNESS MATRIX
CALL DYBSOL(NDOF+891409Ss Wslsl)
RETURN
1001 FORMAT(5110)
2000 FORMATU(//59HOKINEMATIC CONSTRAINTS (0 = UNCONSTRAINEDs 1 = CONSTRA
1INED) /
2 6Xs4HNODE 95X » 10HMERIDIONAL s 9X s 6HRADIAL s 7Xs8HROTATIONY
3 8Xs THWARPING/)
2001 FORMAT(110+4115)
END

SUBRCUTINE EIGEN

THIS SUBROUTINE TRANSFORMS THE EIGENVALUE PROBLEM FROM
K{g ) %RU() = OMRR2EM(, ) #U()

T0
Als)BV() = V()/0M##2
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WHERE
rie) = STIFFNESS MATRIX
Als) = DIAGONAL MASS MATRIX
Als) = M(s)¥R05%F (s )#M(,4)%%0,5
Fle) = FLEXIBILITY MATRIX AFTER CONDENSATION ON DEGKTES OF

FREEDOM NOT CORRESPONDING TO LUMPED MASSES
VI) = Mo ) %R0 S5%15()
THE EIGENVALUES AND NMS OF THE EIGENVECTORS ARE THEN CCMPUTED.
LOGICAL LRI
COMMON / 7/ NNsNEsNMSoNDOF sNBCoNLM LRI sPI
COMMON /ARRAY/ S{140+8)9sST(34412+4)sXM{140)+A(135+105)19E(105)>
1 V(105+105)+s1IV(105)9W(140)
COMMON /STMATS/ SEL(12+12)9B(12512)sDB(12912)9T(12512)
DIMENSION G(105)sR{105)sP(105),Q(105)sINT(105)
EQUIVALENCE (GU1)sSEL(1))s (R{1)sSEL1106))s (P(1)sB(6ET)),
1 (Q(1)sDB(28))s (INT(1)sDB(133))
COMPUTE INDEX VECTOR OF LUMPED MASSES
N =1
DO 100 I = 1sNLM
IF(XM(N)eNEos0D«0O) GO T2 L0
N = N+l
GO TO 50
tvil) = N
N = N+l
ASSEMBLE MATRIX A(s)
DO 300 I = 1sNLM
DO 200 J = 1sNDOF

W(J) = 040
N = IV(])
W(N) = 140

CALL DYBSOL(NDOF»85140s5sWs2sN)

DO 300 J = I+NLM

L = IV(J)

AtJsI) = XMIL)Y*W(L)*XM(N)

AlTeJ) = AlJs )

COMPUTE EIGENVALUES AND EIGENVECTORS

CALL HQRWINLM»105sNMSsAsEsViGsRsPsQeWs INT)
COMPUTE AND PRINT NATURAL FREQUENCIES

WRITE (2+2000)

DO 400 I = lsNLM

E(1) = 140/SQRT(E(T))

PER = 2.0%PI/E(I)

FREQ = 1+0/PER

WRITE (2+2001) I+E(I)sFREQsPER

RETURN

FORMAT(21HINATURAL FREQUENCIES 7/

1 10H MODE NOe»15Xs5SHOMEGA 10X 10HOMEGA/2#PI s14Xs6HPERIOD /
2 21Xs9HIRAD/SEC) 911X s9HICYC/SFC) 915XsSHISECY /)
FORMAT(11N0+3E20.8)

END



SUBROUTINE SHAPES

THIS SUBROUTINE RECOVERS AND PRINTS THE COMPLETE MODE SHAPES.
LOGICAL LRI

REAL NUCINUF

COMMON / / NNsNEsNMS4sNDOF yNBC,NLM4LRIP1

COMMON /ARRAY/ S(140+8)95T(344512:4)+XMU140)sA(205+105)4+E(105)>
1 V(1055105)1,1VI(1N5)eW(160)

COMMON /NODGEO/ R(35),2(35)

COMMON /PROPS/ HsDoHF sHCHEF s NUF 4 GF 4 EC s NUC s GC 3 BF 3 OF 4BCy DC
DIMENSION U(12)

EQUIVALENCE (U(l)4Al1))

WRITE (2+2003)

DO 800 I = 1sNMS

C = E(I)=E(])

DO 100 J = 1«NDOF
100 WtJ) = 00

DO 200 K = 1oNLM

L = IVIK)

200 W(L) = CHXM'LI®RV(K,])
CALL DYBSOLI(NDOF +8351409SeWs2s1)
WRITE (2+2000) 1
DO 700 J = 1sNE
IL = 4%5 - &4
DO 300 K = 1.8
IXK = IL + K
300 UIK)Y = wIK)
RECOVER CONDENSED DISPLACEMENTS
DO 400 K = 1s4
JK = K + 8
IKBE UKk -1
U(JK) = 0.0
DO 400 L = 1sIK
400 UCJIK) = ULJK)Y = ST(JeLsKIEYIL)
COMPUTE ADDITIONAL DISPLACEMENTS OF INTEREST AND PRINT

GAMCI = U(4) + U(9)
GAMCJ = U(8) + U(10)
CHIST = (HC®GAMCI + HF®U(9))/D
CHISJ = (HC*GAMCJ + HF#U(10)3)/0

CHIT1 = ut3) + CHIsI
CHIJ = U(7) + CHIsy
GAMO utll)y - u12)
CHISO = (HC¥UU1l) + HF*UL12))/D
700 WRITE (2+2001) JeR(J)IeZ(J)
1 UG1YsUL2) 9 CHITSU3) s CHIST SUL4) 9GAMCT 2U(9)
2 CHISOsGAMOWU(11),4U(12)y
3 5 sULE) s CHIUIU(TYoCHISISU(B) 9 GAMZJ9U{10)
BNO WRITE (252002} R(NN)9Z(NN)
RETURN
2000 FORMAT(/18HOMODE SHAPE NUMBER 13/
1 S5H NODEs2Xs13HMERIDIONAL s Us6X99HRADIALs W92Xs 13HROTATIONs CHI
2 SX96MCHI(B) 9 IXs6HCHI{S) 93 X9 12HWARPINGy GAMs 7TX 9 BHGAMMA(C) 97X
3 BHGAMMA (F /)
2001 FORMAT(8H ELEMENT,13,39Xs TH{Rs2Z) =9 FOebyslHesF944 /
1 4Xs1HIL8E154.7/

B

n

(@)
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2002
2003

180
200

300

350

2 4X91HO960Xs4E1547/

3 4X91HJI9BEL1S5.7/)
FORMAT (50X s TH(RsZ) =9FebslHssF9.4 )
FORMAT(16H1VIBRATION MODES /)

END

SUBROUTINE DYBSOL (NNsMMeNDIMsAsBoKKKsLIM)

DYBSOL IS AN SPECIAL IN-CORE BAND SOLVER FOR DYNAMIC PROBLEMS
INVOLVING CONDENSATION OF ROTATIONAL DEGREES OF FREEDOM.
PROGRAMMED BY C. %e FELIPPA,

DIMENSION A(NDIMs1)s B(1)
NR = NN -1
IF (KKKeGTel) GO TO 300

DECOMPOSITION OF BAND MATRIX A WITH SEMI-BANDWIDTH MM

DO 200 N = 1,4NR

M=N-1

PIVOT = A(N»l)

IF (PIVOT.EQeOe) PIVOT = 1.,0E-08
MR = MINO (MMyNN-M)

DO 200 L = 2sMR

C = A(NsL)/PIVOT

IF (CeEQeDe) GO TO 200

=M+ L '

0 K = LsMR
J=J+1
AlTsd) = A(lesJ) - CHA(NK)
A{NsL) = C

CONTINUE

GO TO 500

FORWARD REDUCTION OF VECTOR B FROM B(LIM) TO B(N)
AND BACKSUBSTITUTION FROM B(N) TO B(LIM)

DO 350 N = LIMsNR
M=N-1

MR = MINO (MM,NN-¥)
C = B(N)

B{(N) = C/A(N»1)

DO 350 L = 24MR

I = M+ L

B(I) = B(]) = A{NyL)*C
BINN) = B(NN)/A(NNs1)
NS = NN = LIM + 1

DO 400 K = 24NS

NN - K

M+ 1

Hon

M
N

241
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MR = MINO (MM,K)
DO 400 L = 2sMR
1 =M+ L

MATRIX G IN THE CALLING PROGRAM.

THE NUMBER OF EIGENVECTORS DESIRED
SPECIFIES THE ORDERING OF THE
seese E(N} AS FOLLOWS

BY INCREASING ALGEBRAIC VALUE

By DECREASING ALGEBRAIC VALJUE.

400 B(N)Y = BIN) — A(NoL)*B(I])
500 RETURN
END
SUBROUTINE HQRW (NsNMsMsGsEsVeAsBaPaWeQsINT)
P A N I
SUBROUTINE TO COMPUTE EIGENVALUES AND EIGENVECTORS OF A
SYMMETRIC REAL MATRIX STORED AS A TWO-DIMENSIONAL ARRAY.
BN N OB R R O X K B B N O K K ¥ OB % B
PROGRAMMED BY Ce Ae FELIPPAy FEBe 1967
INPUTS
N MATRIX ORDERs MiIST NOT EXCEED NM,
NM DIMENSION OF INPUT
M NVEC = IABS(M) 18
{0 TO N)e ITS SIGN
ETGENVALUES E(1)
IF M LT 0 OR =0y
IF M GT 0 OR +0»
CALCULATED EIGENVECTORS (IF ANY) WILL CORRESPOND TO
E(1)s E(2) see E(NVEQ)
G INPUT SYMMETRIC SQUARE MATRIX (RETURNS UNALTERED).
OUTPUTS

E VECTOR OF EIGENVALUESs ARRANGED AS EXPLAINED ABOVE.

v . NORMALI1ZED EIGFNVECTORSs STORED AS COLUMNS OF V.
IF NVEC=0s Vv MAY BE A DUMMY VARIABLE.

A DIAGONAL OF REDUCED TRIDIAGONAL FORM,

8 FIRKST OFF-DIAGONAL

WORKING SPACE

PsWsQs INT WORKING VECTORS OF LENGTH AT LEAST NsN+1sN AND N

RESPECTIVEL

OF RENDUCED TRIDIAGONAL FORM.

Ye IF NVEC=0s Q AND INT MAY RE

DUMMY VARIABLES.

LR JE K JEE BEE N JEE K B BE B K BE R N

% % % ¥ X ¥ % K B X % X % % * #

242
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243

MINIMUM DIMENSIONS IN THE CALLING PROGRAMA SHOULD BE
G(NMgN)y E(N)s VINMINVEC)s A(N}s B(N)s PIN)y WIN+12s QIN)s INT(N)
BUT VsQ ANG INT CAN BE DUMMIES IF NVEC=0 (NO EIGENVECTORS).

IR IR S AR A I S SR I I I A N N A A A R E N
THE FOLLOWING PARAMETERS ARE MACHINE-DEPENDENT AND SHOULD
BE PRE-SET AS FOLLOWS

PRECS = 10+%%#(-NDIG) WHERE ADIG IS THE NUMBER OF SIGNIFICAN.
DECIMAL DIGITS CARRIED QUT BY THE MACHIWNE IN FLOATING
POINT ARITHMETICe

BASE = THE BASE NUMRER OF THE MACHINEs IN FLOATING POINT,
ILIM = TO BE CHOSEN SO THAT BASE##(ILIM+4) IS OF THE ORDER

(BUT DOES NOT EXCEED) THE MACHINE OVERFLOW LIMIT.
HOV = BASE®*(ILIM/2)

THIS VERSION IS FOR THE CDC 6400 (NDIG=15s BASE=2es ILIM=1000)
EOE R R R R R K R R R R R R E KRR R R KR KRR KRR RN RN

DIMENSION G(NMs1)s E(l)s VINMy1)s A(1l)s A1) P(1l)y W(l)s Q(1)
REAL LAMBDA

LOGICAL INTI(1)

IF (NeLE«DsORsNeGT4NM) GO TO 1000

PRECS = 1e0E-15

BASE = 2.0

ILI¥ = 1000

HOV = BASE*#500
8(1) = 0.

SQRT2 = SQRT(2)
N1 = N-1

DO 100 I = 1N
E(I) = G(Is1])

IF (N-=2) 900+280»110
LR B R I A B BN N T R R 2R A R R R EE R N AR 2R B K R I N

TRI-DIAGONALIZF MATRIX G BY HOUSEHOLDER'S PROCEDURE
oK R R K R E R R X X K K X X K R X R K E R E X E X XX X F KR K

DO 250 K = 24Nl

Kl = K ~-1
KJ = K + 1
Y = G(KeK1)
SUM = 040

DO 120 I = KJsN

SUM = SUM + GI(1,K1)#%2

IF (SUMJEQ.Oe) GO TO 230

S = SORT(SUM+Y%#2)

B(K) = SIGN(Ss-Y)

WIK) = SQRT(1e+ABS(Y)/S)
X = SIGN(1e/(S*¥WI(K))sY)

DO 150 I = KN

IF (1eGToK) W(I) = X#G(IsK1)
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P(I) = O«
150 G(IsK1) = W(I)
DO 18C I = KN
Y = Wil)
IF (Y EQe0s) GO TO 180
I1 =1 +1
DO 160 J = K»sl
160 P(J) = P(J) + YRG(1s))
IF (11.GTeN) GO TO 180
DO 170 J = I1leN
170 P(J) = P(J) + Y%G(Je 1)
180 CONTINUE
190 X = 0.
DO 2¢0 J = KN
200 X X + WIJI*P(D)
X De5¥X
DO 210 J = KN
210 P{J) = X*W(J) = P(J)
DO 220 J = KN
DO 220 1 = JsN
220 GUIsJ) = G(IsJd) + PLINRW(J) + PLIIRWL])
GO TO 250
230 G(KsK1) = SQRT2
B(K) = =Y
DO 240 1 = KJsN
240 G{IsK) = =G(I,K)
250 CONTINUE
280 DO 290 I = 1N
A(TI)Y = GUILD)
290 GUlIs1) = E(I)
B(N) = G.nNsN1)

# % F % ¥ % X ¥ X H O X F ¥ R % F X X F B K K F X ¥ K ¥ X % ¥ % ¥ * *
GET EIGENVALUES OF TRIDIAGONAL FORM BY KAHAN-~VARAH Q=R METHOD

* ¥ ¥ O F K O X K X X X K N X H X % X K # O X ¥ X ® F X ¥ F % X % € #
TOL = PRECS/(10e*FLOAT(N})
BMAX = Q.
TMAX = 0.
WIN+1) = O,

DO 1IN0 I = 1N
BMAX = AMAX1(BMAX+ABS(B(1)))
300 TMAX = AMAX1(BMAXsABS(A(1))yTMAX)
SCALFE = 140
IF (8MAXeEQsDe) GO TO 520
DO 310 I = 1sILIM
IF (SCALE*TMAX.GT4HOV) GO O 320
310 SCALE - SCALE*BASF
320 DO 330 1 = 1N
EtI) = A(1)#SCALE

330 Wil (BOI)®SCALE)##2
DELTA = TMAX#SCALE*TOL
EPS = DELTA%®*2
K = N

350 L = X
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IF (LeLFe0O) GO TO 460

Lt =L -1

DO 360 I = 1,L
Kl = K

K =¥X~-1

360 IF (W(K1)eLT.EPSY GO TO 380
380 IF (KleNEel) GC TO 400

wWiL) = 0.
GO TO 350
an0 T = E(L)Y - E(L]D)
X = wibL)
Y = Ded#*T
S = SORT((X})

IF (ABSIT)GTLDELTA) S = (X/Y)/7(1.4SQRT(1le4X/YRR2Y)
F1 = E(LY + S

F2 = E(L1)= S

IF (KleNEosLl) GO 7O 430

ErLy = E1
E(LI) = E2
WIL1) = 0.,
G0 TO 350

430 LAMBDA = E1
I7 (ABSET)eLTDELTALAND.ABS{E2)«LT.ARS(EL1}) LAMBDA = E2

S = De
C = 1le
GG = E(K1)-LAMBDA
GO YO 450
440 C = F/T
S = xX/7
A = GO

56 = C#(E(K1)-LAMRDA) - S#X
FIK) = {X-GG) + E(Kl)
F (ABS{GG)+LTDELTA) GG = GG + SIGN(C*DELTA+GG)

F = 5G#%2/C
K = Kl

Kl = K 1
X = WiK1)

T =X+ F
W(K) = S*T

IF (KelTel) GO TN 440
E(<) = G~ + LAMBDA
GO TO 350

460 DO 470 1 = 1N

470 S(1) = E(I1)/SCALE

Y = ISIGN(1sM)
DC 5C0 L = 1sN1
K=N=L

DO 5C0 1 = 1,X
IF (YRIE(I)-E(I+1))eGT&4O0e) GO TO 500
X ==
EtI) = E(1I+])
EC(I+1} = X
5n0 CONTINUE
520 IF (M4 EQ.0Y GO TN 1000
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*
*

BB R R EREEEEERSREEERREEE RSN
COMPUTE EIGENVECTORS RY INVERSE ITERATION

[ K B N BE SR 2 A Bk BE K R E R R K R N K R N I BE N N K SR JEE SR N N R

-
»

NVEC = [ABS(M)
IF (NVECGT N} NVEC = N
F = SCALE/HOV
IF (RMAX®F.LT.PRECS}) GO TO 830
DO 530 1 = 1N
At(I) = AL])*F
530 B/1) = BlI)*F
SEP = 25.%TMAX*PRECS
X1 = O
X2 = S5QRT2
DO 800 NV = 1sNVFC
IF (NVeGTaleANDLARSIF(NVI-F(NV-11),LTeSEP) GO YO 550
DO 540 I = 1sN
S40 W(I) = 1e0
GO TO 570
550 DO 560 I = 1N
X = AMOD(X14+X2s2+0)
X1 X2
X2 X
560 W(l) = X - 1.0
570 EV = F(NV)I*F

X = A(l) - EV
Y = B(2)
J = N1
DO 600 1 = 1,.Ni
C = A(I+1) - EV
S = 3(l+1)
IF (ABS(X)eGFABS(S)) GO .TO 580
Pt1)y = S
Gy = ¢
INT(I) = «TRUE.
Z = =X/S
X =¥ + 2%C
IF (1eLTeNL) Y = Z28(142)
GO TO 60N
80 IF (ABS{X).LT.TOL} X = TOL
Ptry = X
C(1y = Y
INT(1) = .FALSE.
Z = ~S/X%
X = C + 2wy
Y = B(I+2)
670 VITeNV) = 2
1F (ABS(X).LToTOL) X = TOL
NiTER = 0 e

620 NITER = NITER + 1|
WIN) = WIN)/X
SUM = W(N)#*%2
00 640 L = 1eN1
! N - L
Y WiI) = QUIY*W(I+])



640

€60

680

10

730

740

780
769

8no

820
830
8490
850
850
880
300

1000

IF (INT(I)) Y = Y = R(I+2)%W(]+2)
wWiI) = Y/PL])

SUM = SUM + W(])##2

S = SQRT(SUM)

D0 660 I = 14N

wily = wiI)’s

IF (NITFR.C-e2) GO TO 760

DO 700 I = 1eN1

2 = VIIeNV)

IF (INT(I)) GO TO 680

WiI+l) = WlI+1) + Z®w(])

GO TO 700

Y = Wil}

WiI) = wW(l+1)

Wilel) = Y + Z¥y(])Y

CONTINUF

GO YO 6290

L J

J J -1

X Oe

DO 740 1 = LN

X = X + GUloyJ)Ru(]?

DC 750 I = LN

WiI)y = WilI) - X#G(1,))

IF (J«GTel) GO TO 730

DO 800 I = 1N

VIIeNV) = Wil)

DO 820 1 = 1N

At1Y = ALY /F

R{I) = B(I)/F

GO TO 860

NO 850 NV = 1yNVFC

DO B40 1 = 1N

VIIsNV) = 0.

VINVeNV]) = 7,0

DO 880 I = 2,N
K=1-1

DO 880 J = 1,XK
GilsJ) = G(Jy])
GN TH 1000
Vilsl) = 1le0
A{l1) = E(]1)
RETURN

END

L7



APPEND1X Feoe COMPUTER PROGRAM FOR FREE VIBRATION ANALYSIS OF VISCJELASTIC
AXISYMMETRIC SANDWICH SHELLS (FORTRAN V)

PROGRAM ASVEFVQUINPUT+OUTPUT+TAPEL=INPUT+TAPE2=0UTPUT)

FREE AXISYMMETRIC VIBRATION ANALYSIS OF THIN ROTATIONAL SANDWICH
SHELL WITH CONSTANT THICKNESS AND TWICE CONTINUOUS MERIDIAN.
INCLUDES DETERMINATION OF EFFECTIVE DAMPING DUE TO LINEAR vISCO-
ELASTIC MATERIALS. (LIMITED TO MATERIALS WITH REAL POISSON RATIO)
MATERIAL PROPERTIES MAY NOT VARY IN THE MERIDIONAL DIRECTION FOR
THE PRESENT PRCGRAMs ALTHOUGH MODIFICATION FOR THIS CAPABILITY
MAY BE READILY ACHIEVEDe NO RESTRICTION ON RATIOS OF LAYER THICK-
NESSES OR LAYER PROPERTIESe. NODES ARE NUMBERED CONSECUTIVELY
ALONG THE MERIDIAN AND IF A NODE IS LOCATED ON THE AXIS OF SYM-
METRY NUMBERING MUST BEGIN AT THIS NODE. ELEMENTS ARE NUMBERED
SUCH THAT THE ELEMENT NUMBER IS THE SAME AS THE SMALLER ADJACENT
NODE NUMBER.

STORAGE FOR 20 NODES (AND THUS FOR 19 ELEMENTS).

SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG THE CHORD LENGTH»s RESPECTIVELY.

[ T T T IR TSR EF Y Y Y I 2 ST Y T Y S T PR I IR T Y R

DATA CARDS FOR ASVEFvQ
[y ey YIRS ST TN ¥ 3

1 CARDes 110 NUMBER OF SHELLS TO BE ANALYZED
THENs FOR EACH SHELL,y ALL OF THE FOLLOWINGe.

1 CARDese (COLSe 2~72 TITLE

1 CARDes 3110,L10
NUMBER OF NODES»s NN
NUMBER OF MODE SHAPESs NMS
NUMBER OF NODES WITH RESTRAINTSs NBC
ROTATORY INERTIA INDEX (T IF LUMPED ROTATORY [INERTIA
INCLUDEDs F OTHERWISE)

1 CARDes B8F10.0
THICKNESS OF 1 FACING (INe)
YOUNGS MODULUS OF FACINGS (PSI) (RE AND IM PARTS)
POISSON RATIO OF FACINGS
SHEAR MODULUS OF FACINGS (PSI) (RE AND IM PARTS)
SHEAR STRESS CORRECTION FACTOR FOR FACING
DENSITY OF FACINGS (LBe/INe#%3)

1 CARD+.s B8F10.0
THICKNESS OF CORE (INs)
YOUNGS MODULUS OF CORE (PSI) (RE AND IM PARTS)
POISSON RATIO OF CORE
SHEAR MODULUS OF CORE (PSI) (RE AND IM PARTS)
SHEAR STRESS CORRECTION FACTOR FOR CORE
DENSITY OF CORE (LBe/IN.%#%#3)

(NOTEee SHEARING MAY BF NEGLECTED BY SETTING REAL PART OF G TO
9999999999)
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10¢
1000

2k9

NN CARDSee [110+3F1040
NODE NUMRER
Rs ABSCISSA OF NODE (INe)
Zy» ORDINATE OF NODE (INs) .
PHls LATITUDE ANGLE OF NODE (DEGREES)

NN=-1 CARDSes 2F1040
CURVATURE AT NODE I OF ELEMENT (1/INe)
CURVATURE AT NODE J OF ELEMENT (1/1IN,)

NBC CARDSe«e 5110
NODE NUMBER
TANGENTIAL DISPLACEMENT INDEX (0=FREEs 1=CONSTRAINED)
RADIAL DISPLACEMENT INDEX ( DITTO )
BENDING ROTATION INDEX ( DITTO )
SHEAR WARPING INDEX ( DITTO )

LOGICAL LRI

COMMON / / NNsNEsNMSeNDOF ¢NBCsNLMsLRI»P1
Pl = 3414159265358979
READ 1000s NSHELLS

DO 100 N = 1sNSHELLS
CALL SETUP

CALL BCS

CALL EIGEN

IFINMSeNE«D) CALL SHAPES
CONTINUE

FORMATI(I110)

STOP

END

SUBROUTINE SETUP

THIS SUBROUTINE READS THE GEOMETRICAL AND MATERIAL PROPERTIES OF
THE SHELL AND SETS UP THE OVERALL STIFFNESS MATRIX AND THE DIAGON-
AL MASS MATRIXs BOTH UNMODIFIED FOR BOUNDARY CONDITIONS.

SHEAR STRAIN AND CURVATURE MODFLS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTHs RESPECTIVELY.

COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS.

REAL NUF sNUC+KF +KC

LOGICAL LRI

COMPLEX SsSTsAsEsV

COMPILEX ECsGCHEF sGFsRF9DFsRCHNC

COMPLEX SEL.DB .

COMMON 7/ 7/ NNsNEsNMSyNDOF sNBCsNLMSLRISPI

COMMON /ARRAY/ S(8098)9ST(19351294)9XM{B80)2A(60460)9EL(EO)sIVIE0)
1 v(80)

COMMON /PROPS/ HsDsHF sHC»EF sNUF 9 GF s EC s NUC 9 GC »BF sDF 9 BCeDC

COMMON /XGEOM/ YPsYPPyRXsCOSBsYBARWX({10)

COMMON /ELGEOM/ EL»SPSIsCPSI+TBlsTB. sCBIl9CBIsSBIsSBIALAZ29A3 AL
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COMMON /NODGEO/ R(35),21(35)

COMMON /STMATS/ SEL{12912)4B(12+12)sDB112412),T(12512)
DIMENSION CPHI(35)sSPHI(35)sW{10)sY(10)sWM{10)4AN(3Z)sPHI (35)
EQUIVALENCE (CPHI{1)sA(1))s (SPHI(1)sA(101))s (PHI(1)sA(201))>
1 (AN(1),A(301))

DATA X / 0e013046735741414 0e067468316655507

1 0.1602952158506488s 0.283302302935376s 04425562830509184,

2 045744371694908169 04716697697064624s 04839704784149512,
3 0e932531683244493y 0,986953264258586 /

DATA W / 0.0666713644308688, 0,149451349150581,

1 0.219086362515982, 04269266719309996 04295524224714753,
2 04295524224714753s 04269266719309996s 0¢219086362515982,

3 06149451349150581s 0.066671344308688 /

DATA Y / 0e0234550238515334, 0.115382672473579,

1 06259 0638461732752646219 064765449614840666, (045234-50328515334
2 066153826724673579s 06759 0a884617327526421y 0e976544L061484666
DATA WM/ 014236926885056189, 0,4786258670499366

1 n.568888888388885, 0.4TRBE2B6T0459366s Ca226926885056189,

2 D0e236926885056189, N4T78628B6704993669 C«S6BBBABBARKRERAY,

3 0.47B628670499366s 04236926885056189 7/

WRITE (2+2000)

READ (1,1000)

WRITE (2+1000)

READ (151001) NNSNMS,NBCsLRI

READ (151002) HF sEF  'IF+GF o KF o RHOF

READ (1s1002) HCF7 o NHCsGC o KC4RHOC

/

250

WRITE (2420011 NNsAMS,NBCs HF sHCy EF 4 NUF 3GF 4KF 4 RHOFy ECoNUCsGC KTy

1 R:OCs LRI
IFINNGTe 20) GD TO 900
IF(REAL(GF) «GE499999999984,0) GF
TF{REAL(GL) «53E 69999999998 ,4,0) GC
H = ML + 24O%HF
N o= HC 4+ HF
NE = NN = 1
MNDOF = 4 %NN
NLY = 2%NN
IF(LRTI) NLM = 3#NN
EF = CF/(1e40 ~ NUF®NUF)

(1.0E+20s 040)
(1eNE+20, a0}

EC = EC/{140 ~ NUC*NUC)
BF = EF*HF

3C = EC*HC

GF = GF*HF*KF

GC = GCRHC*KC

DF = BF*HF*HF/12.0

DC = BCHHC*HC/1i240

RH' = (HC*RHOC + 2.0#HF*RHOF)/386.088

AMOM = (RHOCH*HCH#%#3 4+ RHOF®(H2#3 - HC*#%#3))/(12,0%386,088)
D0 100 1 = 1sNDOF

XM(1) = C.C

DO 1IN0 J = 1.8

0 S(IlsJ) = (DeNs0eN)

JX = 0

WRITE (2+20021)
DR = 180.0/P!
DO 110 T = 1sNN
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AN(1)} = 0.0

READ (151003) IsR({I)s2(1)1sPHIL])
WRITE (2+2003) 1sR{11+Z(1)sPHILIY
PHI(I) = PHI(I)/DR

SPHI1) = SIN(PHICIMN)

CPHI(I) = COSIPHI(I))

WRITE (2+2004)

DC 500 1 = 1sNE

DR = R(I+1) - R(1I}
DZ = 2(1+1) - Z(1)
EL = SQRT(DR#*DR + DZ%DZ'

SPSI = DRV/EL

CFslI DZ/EL

SB1 = CPHI(I)®CPSI - SPHI(1)%*SPS]

CBI = SPHI(I)®*CPSI + CPHI(I)%*5SPS]

TBI = SRI/CBI

SBJ = CPHI(I+11#CPSI - SPHI(1+13¥%5PS]
CRY = SPHI(I+1)#CPSI 4+ CPHI(I+1)#SPSI
TBJ = SBJ/CBJ

READ (1+1004) CURVISCURVJ
WRITE (292005) IsCURVIsCURVJISELsSPST+CPSIsTBISTBY

YPFI = ~EL®CURVI/CBI*%3

YPPJ = —EL*CURVJI/CBI%%3

Al = 7TBI

A2 = TBI + 0.5%YPP]

A3 = =(547*TBI + 4.0%TBJ) + 0.5%YPPJ - YPPI
AL = 3,0%(TBI + TBJ) + 0.5%({YPPI =~ YPPJ)

DO 150 J 1912

D0 150 K 1s12

SEL(JsX) {0:05040)

COMPUTE ELEMENT TRANSFORMATION MATRIX (A®®=1)%T

CALL TMATI(I)

D0 400 J = 1,10

YBAR = (1.0 = X{(JVI%(AY + X(JIH(A2 + X(J)%(A3 + X(J)*A4)))
YP = Al%(140 — 2e0#X{J))4+ X{JIH(A2# (240 - 3.0%X(J)) + X{(J)#(A3%
1 (340 = 4a0%X(J)) + A4RX(J)I% (440 = S4,0%X(J))))

YPP = 240%(~A1 + A2%*(140 — 3.0%X(J)))1+ X({J)H(A3#(6e0 - 12.0%*X(J))
1 + AGEX(JI®(12.0 ~ 20,0%X¢J)))

RX = R(I) + X(J)*EL*(SPSI + YBAR#CPSI)

COSR = 140/(SQRT(1,0 + YP#YP))

EVALUATE B(s) AT INTEGRATION POINTS

CALL BMAT(IsJ) .

ADD CONTRIBUTION TO ELEMENT STIFFNESS INTECRATION

C = DIXEL*RX*W(J) /COSB

CALL SELA(CQ)

YBAR = (160 = Y(J)I®(AL + Y{JIR(A2 + Y(JIR(A3 + Y. J)*A4)))
YP = A1%(140 = 2e0%#Y{u))+ Y(J)R(A2%(2,0 = 3,0%Y(J)) + Y{J)#(A3®
1 (340 =~ 4a0RY(J)) + ALRY(JI*(4.0 - 5.,0%Y(J))))

RX = R(I) + Y(J)*FEL*(SPST + YBAR#CPSI)

COSB = 140/(SQRT(140 + YP*YP)}

C = PI*FL*RX*WMI(J)/COSB/240

1IF1JeGTe5) GO TO 200

AN(IY = AN(IY + C

GO T 400

AN(I+1) =AN(I+1) + C
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400 CONTINUE
TRANSFORM 12x12 ELEMENT STIFFNESS TO GLOBAL CO-ORDINATES AND CON-
DENSE TO 8Xx8
CALL SELR(IY |
STORE MULTIPLIERS AND PIVOTS
DO 420 J = 14
1= J + 8
DO 420 K = 1912
420 ST(1sKsJ) = SEL(1J+K)
ADD 8X8 ELEMENT STIFFNFE TO OVERALL STIFFNESS
DO 450 J = 1.8
IJ = UK + J
DO 450 K
IK = K -
450 S{1Je1IK)
500 JK = JK + &
CONSTRUCT DIAGONAL MASS MATRIX
DO 600 I = 1NN
1J = 4#] - 3
XM(IJY = XM(IJ+1) = SQRT(RHO®AN(TI)Y)
IF(«NOTLLRI)Y GO TD 600
XM{IJ+42) = SQRT(AMOM®BAN(I))
600 CONTINUE
RETURN
An0 WRITF (2,2900)
STOP
1000 FORMAT(72H
1 )
1001 FORMAT(3110+L10)
1002 FORMAT(8F10.N)
1002 FORMAT(I10s3F1040)
1004 FORMAT({2F10.,0)
2NN0 FORMAT(1H1)
2001 FORMAT(10Xs2B8HNUMBER OF NODES 213/
109X, 28HNUMBER OF MODE SHAPES 213/
10X+ 28HMNUMBER OF RESTRAINED NODES s137/
10Xs 16HFACE THICKNESS =9F1046/
10X 16HCORE THICKNESS =9F10.67/
10X4BHFACE E =9F13e191HssFlbue3/
10X s 9HFACE NU =4F1245/
10X+sBHFACE G =3sF134191HesFlbe3/
10X 1NHFACE KAP =4,F11,5/
10X+ 10HFACE RHO =9F1146//
10X+8HCORE E =9F13e191Hs9sFlbe3/
10X+ 9HCORE NU =9F1245/
10Xs8HCORE G = Fl13elslHssFlaa3/
10X+ 10HCORE KAP =4F1145/
10X 10HCORE RHO =49F11e6//
444 ROTATORY INERTIA INCLUDEDN (T = YESs F = NO) #LS //
45H ALL QUANTITIES IN INCHESs POUNDS AND SFECONDS /)
29Nn2 FORMAT(//11HONODAL DATA /
9 2X 9 4HNODE 9 TX911HABSCISSAs Re8X912H CRDINATESs Zs56Xos
1 13HULATITUDE ANGLE/
2 15XsS5H(INe) 915X eS5HIINS) 913X s8H(DEGREE) /)
2703 FCRMAT(I4,3F204.8)

*

nen
-

Je
+
SUIJelK) + SEL(JsXK)

VE WO NN T & WN -

-~
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FORMAT(/18HOELEMENT GEOMETRY /

1 8H ELEMENT 910X s THCURVII) 310X s 7THCURV(J) s5X 31 2HCHORD LENGTHs10X»
2 THSIN PSIs10XsTHCOS PSIs6Xs11HTAN BETA(I)s6Xs11HTAN RETA(JY/
3 18Xe7H{1/INe) +s10Xs7H{1/INe) 912X s5H{ING))

FORMAT(18+7F17.8)
FORMAT(////741HONUMBER OF NODES EXCEEDS ALLOWARLE STOP )
END ’

SUBROUTINE TMAT(1)})

THIS SUBROUTINE EVALUATES THE CO~ORDINATE TRANSFORMATION MATRIX
(A%%=1)%T FOR ELEMENT I

GLOBAL CO-2RDINATES ARE S AND XI (MERIDIONAL AND RADIAL)s AND
THUS CAN BE APPLIED ONLY TO SHELLS WITH TWwICE CONTINUOUS MERIDIANS
SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTHs RESPECTIVELY,

COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS,

REAL NUCNUF

COMPLEX ECoGCEF sGFsBFsDFsRCHNC

COMPLEX SEL,.DB

COMMON /PROPS/ HsDsHF sHCOEF s NUF s GF 4 ECoNUC yGC s BF o LF s RCo DC

COMMON /STMATS/ SEL(12+12)e8(12912)sDB(12512)7T(12512)

COMMON /NODGEOQ/ R(35),2(35)

COMMON /ELGEOM/ EL9SPSIsCPSToTBl o TBJsCB19CBI2SBIsSBUsALlA24A3 A4

DO 100 J = 1912
DO 100 K = 1y12
BlJsK) = N0

IF{R{1)eEQu0e0) GO TD 500
MATRTX FOR OPEN-ENDED ELEMENT

Bllsl) = B(3s2) = Bl{246) = 1,40

B(T7e4) = BU7+5) = B(945) = 1.0

B(8s9) = B(Bs10) = B(10s10) = B(2s1) = =1,0
B(asl) = -TBI

Blas6) = TBI

3(6+6) = TBI + TBJ

B{6s1) = - Bl(646)

B(5+1) = B(6s6) + TBI

B(5+6) = =B(5+1)

B(5+2) = B(Bs4) = B(8s5) = 3(10+5) = =3,
Bl6+2) = B(lle4s) = B(11s5) R{12¢5) = 240
B(11s9) = B(11+10) = B(12+10) = 2.0

B8(5+7) = 340

R{6s7) = =240

B(8s11) = B(10,12) = 4,0
B(11ls11) = B(12912) = =440

Bl4as3) = B(6s3) = ~EL/CBI/CBI
B(593) = =2,0%B(443)

Blass) = B(694) = HCH¥RB(493)/D
B(S5sh) = —=2.0%B(4ys4)

B{4s5) = Bl6s5) = B(44+3)
B(595) = —2,0%#B(4,5)
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500
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1000

B(5+8) = EL/CBJ/CBY

B(6+8) = -B(5,8)

Bi{599) = HC*B(5,8)/D

Bt6+9) = —-Bl5,+9)

B(5+10) = B(5,8)

B(6+10) = =B{5,10)

DO 200 J = 1412

T(Jsl) = CBI*B(Jsl) + SBI®B(Js2)
T(Js2) = SBI®B(Jsl) =~ CBI*B(Js2)
T(Je3) = B(J3)

TtJdesd) = Blle4s)

T(JsS5) = CBURB(Js6) + SBIRB(Js7)
T(Je6) = SEIRB(Je6) = CBJI%B(INT)
T(Js7) = B(Js8)

T(Je8) = B(Js9)

T(Js9) = B(JsS)

T(Js10) = BlJ,el0)

TiJs1ll) = BtJ,ll)

T(Jel2) = BlJel2})

GO TO 1000

MATRIX FOR CAP

B(5+2) = -140

B(94+9) = B(9+10) = B(10s101 = =1,0
Bl6s5) = 160

B(7+7) = 340

B(11s9) = B(1l1ls10) = R(12+10) = 240
B(8s7) = =240

B(9s11) = Bl10,12) = 440
Blllsll) = B(12s12) = =440
8(6s2) = -CPSI

B{7+2) = (2.,0%TB1 + TRJI#CPSI + 3,0%SPSI
B(B8s2) = -B(7,2) + TBI*#CPSI + SPS!:
B{796) = -2.0%TBI ~ TRJ

B(8s6) = TRI + 18U

Bl{7+8) = EL/CBJ/CBY

B(8s8) = -B{7,8)

B(T7+9 = HCXB(74+8)/D

B(8s9) = =B(7,9)

B(7+10) = B(7,+8)

B(Bs10) =—-Bi74,10)

PO 700 J = 1s12

TiJel) = TtJe3) = T(JIed) = T(Js9) = 060
TtJs2) = BlJs2)

T(JeS) = CBIHB(Js6) + SBUIRB(Us7)
T(Jeb) = SBUNB(Jsb) = CBIRB(IsT)
TiJs7) = B(Je8)

T(JeB: = BlJs9)

T(Je10) = B(J,10)

T(Jsll) = B(JUslD)

T(Js12) = BlJ,s12)

RETURN

END

254
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SUBROUT INE BMAT(I.+J)

255«

THIS SURROUTINE EVALUATES THE MATRIX B FOR ELEMENT I AT POINT X(J)
SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY

ALONG CHORD LENGTHs RFSPECTIVELY.

COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS.

REAL NUFsNUC

COMPLEX ECsGCHEF sGFsBFsDF sBCoDC
COMPLEX SEL.DB

COMMON
COMMON
COMMON
COMMON
COMMON
DO 100

/NCDGEO/ R(35)42(35)

/XGEOM/ YPoYPP4RX9COSBsYBARIX(10)
K = 1912

DC 100 L = 1412

B(KsL) = 00

Bl = -YPP®COSB®RSH(]1,0 - YP#YP)/(EL®EL)
B3 = COSA%#3/(EL*EL)

R2 = =2,04YPP*YP#331RCOSR#COSA
IF(R(1)eEQeNeO) GO TO 400

B4 = ~EL*B3XYPH(SPS] + CPSI®#YP)/RX

B5 = EL*B3%#(SPSI + CPSI*YP)/RX

B6 = COSB#*(SPS] + CPSI*YDP)/RX

/PROPS/ HeDeHF sHC s EF s NUF ¢ GF 4 ECoNUC 9 GC o PF oCFoRCeDC
/STMATS/ SEL(12+12)eB(12512)eDBU12+12),T(12412)
7ELGEOM/ EL sSPSIsCPSIsTBIoTBUWCBIsCBUSSRIeSRUIALIA24A39AL

+ 2.0#B3
+ 6.unB3I)AX())

MATRIX FOR OPEN-ENDED ELEMENT

R({2s1) = 8(7s1) = BlLY1241) = SPSI/RX

R(2s3) = B(7+3) = Bl12+3) = CPSI/RX

B(2+2) = Bl12s1)%X())

Bt2e0) = B(123v#x())

Bt2s5) = B(2+4)%#X ()

B(2e6) = B(245)%X(J)

B(ss8) = B(9,10) = COSR/EL

Blosll) = B(F912) = 2,08X(J)%B(448)

83(1e2) = COSB®*B(94,10)

Bllesd) = 8B(ly2)%YP

Bl195) = 24N*X(J)Y%R(1,44)

Bllss) = 15%X(J)#B(1,5)

B(3s7) = Bl(JdsD9) = 1e0

Bl348, = B(B8s10) = X(.1})

Bi3s11) = B(8s12) = X( V%X ())

B(4y2) = B(9s2) = Bl

Bluss) = Bl9e4) = R2

B({592) = B({10+2) = B4

B(5+4) = B(10s4) = BS

Bt5+7) = B(10+9) = B

E'%48) = B{10+10) = B6#*Y , J*
*3911) = B(10s12) = X(J)%B(5,8)

Ble5) = BlYe5) = 240%B22 ¢ ))

Blb4e6) = B{9sH) = (3a0#R2%X(J)

Ri5s5) = B(10+5) = 2+ 0%BSRX( JY

B(545) = Bl1046) = 30%B5%X(JYRX(J)

B(592) = B{ls2' -~ D¥R1/240

Blille2) = BU142) + D*B1/2,0

Bless) = Blloed) -~ D¥B2/240

Bill.%) = Blles) + D¥R2/2,.,0

Bl6s5) = B(1ls5) ~ U*B(6y95)/240
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400

B(11s5)

Bl6s5) + D*R {445}

B(6s6) = Blle6) - D*R(4s6) 72,0
Bt11s6) = Bl6+6) + D¥B(446)
Ri6s8) = —HC®B(448)/240

B{11,8)
B8(6+10)
Btll,s10)
B{6911)
Billsll)
Biés12)
Bill,y12)

=B(6+8)
=HF#B(4,48) 7240
= =B(6+10)
2.0%#X1U)%3(608)
= -B(6s1])
2-0%X(J)%#B(6y !
= -Bl6+12)

8(7+2) = B({2,2) - D*B4/2.0

Bt12s2) = B(72) + D*B4
B(7+4) = B(2s4) - D%8B5/2,0
B(1l2s4) = B(T7s4) + D*BS
B(7+5) = B(2+5) ~ D®*BU1S45)/2.,0
B(1245) = B{T7+5) + D*R(545)
B(796) = B(2s6) —~ "#B(546)/24,0
Ri1296) = B(T7s6) -« DRRLIS4H)
B(7+7) = =HC®*B6/2.0

B(12+7) = =B(7s7)

Bl{7e¢8) = BU7s7)%X( )

B(12+8) = =B(7+8)

B{7+9) = -4F#B6/2.,0

Bil1l2s9) = =B(7+2)

BiT7910) = B(7+9)1%X(J)

B(12,10) = =B(7s10)

B(7e11) = X(J)*B(7+8)

B(12s12) = -B(7s11)

Bl7¢12) = X(J)*¥B(7,10)
B(12+12) = =B{Ts12)

GO TO 17200

MATRIX FOR CAP ELEMENT

R6
RS
B4
P{3s9) =
Bl3s11)
B(&4s9) =
Btayell)
Bi4sb)
Bias7)
Bl +e83)
5(596)
1 3,0%(A
B(5s7)
B(5+8)
B154+9)
B{Ss11)
Bllss)
Bt »7)
R{1+8)
Bt 2s6)
B(2:7)
B12+8)

]

[LJ I I N N I B B 1]

b Hwonnn

EL*{SPSI + YRAR#®CPS!)
COSB2%3% (SPS] + YP*_ PSI)/(R6#EL )}
COSB*(SPSI + CPSI#YP) /86

B(8s10) = X(J}

BtB8+12) = X(J)%X{(J)
B(9+10) = COSB/EL

Bl9s12) = 2.,0%X{J)I%B . 449)

B(3«6) = Bl + TRI*32
BlL9s7) = 2.0%B2#X(J) + 2,0%B3
B(9+8) = (3.0%#823¥(J) + 6,0882)2xX())

BUINs6) - SE({{5.,0%AL¥X (I} + HeO®(A3 ~ AL)IXXIJ)

— A3)IEX(J) + 2.0%(A1 - A2))
B(10s7) = 2.0%85
B(10+8) = 3.0#B85#X(J)

B(10,10) = R4

B(10s12) = X(I)¥R4
COSE#B{4s9)%(]1e0+ THBI*YP)
2e0%X(J)RCOGREB (490 ) #YP
1eS%X(JI%R(1+7)

(SPSI + CPSI*THBI) /B6
X(J)*#CPS1/B¢

XtJr%B(247)

+
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B(6s6) = B(146)

B(11,6)

B(6s7) = B(1ls7)

B(lle7)

B(5s+8) = B(1s8)

H{11+:8)
Bt6s9) =
Bt1l1,9)
B(5+10)
B(11,10)
Bt%s11)
B(1ls11)
Bl6912)
Bi1lle12)
B(7+6) =
B(124+6)

~ D*Bl4s6) /2.0

B(6+6) + DRR(446)

~ D*B(Ls7) /2,0

Bt6s7) + D¥Rl4sT)

~ D*B(4+8)/2.0

= Bl6+8) + D#BL448)

~HC*B(4+5)/2.0

~B(6+9)

“~HF #B(449) /240

= -B(6s10)

= 2.0%L(J)R(699)

= =R{6+11)

T 249%X(JIRB(6910)

B(2+6)
= B(74+6)

= -B(6912)

B{T+7) = B(2+s7) ~ D*B

Bl12s7)

B(T7+8) = R(2+8)

B(12+8}
B(7+9) =
Bt124+9)
B(7+10)
Bt12+10)
B(7»11)
B(12.,11)
B(7912)
B{12,12)
RETURN
END

= B(2+7) 4+ D#RS
-~ D*B(5+8) /2.0

5

~ D®B(5+61/2.0
+ DHR(546)

BlT7e8) + DER(5,8)

~HC*B4/24,0

~B(7:9)

-HF #B4 /2 40
= =-B(7+10)
X{J)1%B(T,7%)
= =B(7s11)
X(JY*8(7s10
= ~B(7,12)

SUBROUTINE SELA(C)

THIS SUBROUTINE COMPUTES A TERM IN THE GAUSS INTEGRATION FOR THE
STIFFNESS MATRIX IN GENERALIZED CO-ORDINATES

)
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SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY

ALONG CHGORD LENGTH.
COMPLEX ARITHMETIC FOR LINFAR VISCOELASTIC MATERIALS.

REAL NUFsNUC
COMPLEX ECsGC+EF sGF9RFsDF+NRCHNC
COMPLEX SELsDB

COMMON /PROPS/7 HeDoHF s HCoEF o NUF s GF ¢ ECoNUC s GCoBF s DF s RBCe DC
CCMMON /STMATS/ SEL(12912)98(12912)+DB(12912)T(12912)

DO 100 K
DR{1,X!
DB 2,X)
DB(3,XK)
DR(44+X)
DB(54K)
DB{64+K)
DB(74+XK)

H N s NN

= 1s12
BCH(B(1s%)
BCH* (B(2,%X)
GC*B (3 4% )%C
DC* (Bl4&4eK)
DC*(B(54K)
BF#(316,X)
BF*(B(74X)

[ ]
+

+ + + 4+

RFSPECTIVELY,

NUC®B(2sX) ) %C
NUC®*B (14K} )#C

NUC#B (54X))=C
NUC#B(4,K) ) *C
NUF®B(74X))2C
NUF#B(6+K))%C
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DB(8yK) = GF*B(8.K)*C%240

DR{G4K) = DF®#(B(99K)4+ NUF®#R{10+sK))#C*2.0
DR10sK) = DF#(B(10sK) + NUF#B(94K))*C%2,0
DB(11sX) = BF®#(B({11sK) + NUF#B(]12,X))*C
DBI12+K) = BF#(3(12+K) + NUF®B(114K))*C
DO 20C K = le12

DC 200 L = 1912

DO 200 M = 1,12

SELIKsL) = SELIKsL) + B(MyX)IXDB(MeL)
RETURN

END

SUBROUTINE SELR(L)Y

THIS SURROUTINF TRANSFORMS THE ELEMENT STIFFNESS FROM GENERALIZED
TO GLOBAL CO-ORDINATES AND CONDENSES IT FROM 12x12 TO 8X8 USING
STATIC CONDENSATION.

SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTH, RESPECTIVELY,

COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS,

COMPLEX SEL,,DB

COMPLEX PIVOTs C

COMMON /NODGEQ/ R(351,2(235)

COMMON /STMATS/ SFLI12912)32(12912)4DB(12+12),T(12412)

SYMMETRIZE ELEMENT STIFFNESS IN GENERALIZED CO-ORDINATES

DC 50 1 = 1.11

10=1+1

DO 50 J = lJsl2
IFICABSISEL(]9J))eFQe0e0eORGCABSISFLIIIN)ENLQLD) GO TO 45

SELITsJ)Y = 0eSH(SEL(T4J) + SEL(JyI1))
GO TN 506
SEL(T9sJ) = (NeDsNGD)
SEL(Jsl) = SEL(TI )
TRANSFORM TO GLOBAL CO-ORDINATES
DC 100 1 = 1s12
DO 100 J = 1»12
DB(IsJd) = (009060
DO 100 X = 112
DB{IsJ) = DBIIsJd) + SELIT#XI*T(KeJ)
DO 200 I = 1s12
DO 200 J = 1s12
SEL(l9J) = (0e0+0,0)
DO 200 X = 1s12
SELITaJ) = SEL(IsJ) + T(KsI}%DBI(Ke )

IFIR(L)«NELOsO) GO TO 250

SELIY191) = SEL(3¢3) = SEL(4s4) = SEL(999) = {(140+00)
CONDENSF TDO 8X8 ELEMANT STIFFNESS

DO 300 J = 1ls4

1J =12 - J

IK = 1J + 1

PIVOT = SEL(IK,IK)
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DO 300 K = 1e1J
C = SEL(IKyK)/PIVOY
SEL{IKsK) = C

DO 300 I = KylJ

SEL(IsK) = SEL{1+X) = CESEL(I+IK)
SELIKsI) = SEL(IsX)

RETURN

END

SUBROUTINE BCS

THIS SURROUTINE READS THE BOUNDARY CONDITION DATAs MODIFIES THE
OVERALL STIFFNESS MATRIX AND MASS MATRIX ACCORDINGLY AND THEN
TRIANGULARIZES THE STIFFNESS FOR READY SOLUTION.

SHEAR STRAIN AND CURVATURE MCDELS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTHes RESPECTIVELY.

COMPLEX ARITHMETIC FOR LINFAR v« i1SCOELASTIC MATERIALS.

COMPLEX SsSTsAsEsv

LOGICAL LRI

COMMON 7 /7 NNoNEsNMSoNDOF sNBCeNLMyLRIWPI

CCMMON /ARRAY/ S(B098)9ST(1991234)4XM(BO)sA(60960)sEL60)sIVIE0)
1 v(80)

COMMOMN /NODGED/ RU135)421(35)

DIMENSION NR(4)

IF{R(1)eNEs0O0) GO TDO 100

NLM = NLM - 1

XM{1) = 0.0

IF(«NOTL.LRIY GO TO 100

NEM = NLM = ]

XM(3) = 0.0

WRITE (2,2000)

READ KINEMATIC CONSTRAINTS AND MODIFY OVERALL STIFFNESS AND MASS
DO 300 1 = 1sNBC

READ (1,1001) Ne (NR{J) s J=194)

WRITE (2+2001) Ns(NR(J)sJ=10s4)

IJ = 4N ~ 4

00 300 J = 1.4

IF(NRIJ)«EQeD) GO TO 300

IK = 1J + J

S{IKel) = (1e0s0e0)

DO 200 K = 248

SUIKeX) = (0e090e0}

L= IK-K+1

IF{L.LELO) GO 10 200

S(LeX) = (0e090eN)

CONTINUE

IFlJ.EQe4s) GO TO 300

IF{JeEQe3eANDeeNOTLLRIIGO TO 300

NLM = NLM - ]

XM{IK) = 060

CONTINUE
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IF (NMSWGTWNLM) NMS = NLM
TRIANGULARIZ2E STIFFNESS MATRIX
CALL DYBSLCI(NDOF+84803SsVslsl)
RETURN

FORMAT(5110)
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FORMAT(//59HOKINEMATIC CONSTRAINTS (0 = UNCONSTRAINEDs 1 = CONSTRA

1INED)Y /
2 6Xs4HNCDE 95X+ 10HMERTIDIONAL 99X s SHRADIAL s 7TX s BHROTATION
3 BXs7THWARPING/)

FORMAT (11094115
END

SU2ROUTINE EIGEN
THIS SUBROUTINE TRANSFORMS THE EIGENVALUE PROBLEM FROM
Kis)RU() = OMRR2RM{,4)%U()

70
ALy Y®V() = VI)/0OMRE2
WHERE
Kle? = STIFFNESS MATRIX
My = DIAGONAL MASS MATRIX
A{y) = M) RB0.5#F (s )%M(,)%80,5
Fle) = FLEXIRILITY MATRIX AFTER CONDENSATION ON DEGREES OF

FREEDOM NOT CORRESPONDING TO LUMPER MASSES

V) = M) %%0,5%{)
THE EIGINVALUES AND NMS OF THE EIGENVECTORS ARE THEN COMPUTED.
COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS.
LOGICAL LRI
COMPLEX SsSTsAsEsv
COMMON /7 7 NNSNEJNMSHMDOF o NBCoNLMHLRI NP1
COMMON /ARRAY/ S(BO»8)9sST(19512¢4)eXM(B80)sA(6060)sE(H60Y9IVIE0)
1 v(80)
COMPUTE [INDEX VECTOR OF LUMPED MASSFS
N =1
OC 100 I = 1eNLM

IF(XMIN)eNEsOeO) GC TO 60
N = N+l

GO T2 50

Ivil)y = N

N = N+1

ASSEMBLE MATRIX Als)

DC 300 I = 1leNLM

00 200 J = 1sNDOF

VIJ) = (240+040)

N = IVID)

VIN) = (1e090.0)
CALL DYRSLCINDCF+8480,SeVs2sN)
DO 300 . = 1sNLM

L= IV
AlJel) = XM(LYIRVIL)EXM(N)
AlIesd) = A(Je])
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COMPUTE EIGENVALUES AND EIGENVECTORS
CALL ALLMAT(ALEsNLMyS0sNCAL 9 NMS)
COMPUTE AND PRINT NATURAL FREQUENCIES
WRITS (2,2000)
IFINCAL.EQs0) GO TO S00
DO 400 I = 1sNCAL
E(l) = 1.0/E(])
ETA = AIMAGLE(I))/REALIE(]))
E(l) = CSQRT(E(I))
DEC = AIMAGUE(T)1#2,0%P]I/REALIE(I))
PER = 2.,N*PI/REALIE(]))
FREQ = 1.0/PER
400 WRITE (2+2001) I+E(1)+FREQsPERIDFCHETA
50C IF(NCALJLTONLM) WRITE (2+2002) NCALNLM
IF(NMSGToNCAL) NMS = NCAL

RETURN
2000 FORMAT(50H1FUNDAMENTAL FREQUENCIES AND CORRESPONDING DAMPING //
1 9H MODE » 11X 9 SHOMEGA» 4 X9 12HDECAY CONST e 96Xs 10HOMEGA/2%#P 110X

2 6HPERIODs7X9sIHLOGe DECes5X»11HLOSS FACTOR 7/

3 16X99H(RAD/SEC) 98X s8BHI1/SECe) s TXsIH(CYC/SEC) 9 10XsSHISECL) )
2001 FORMAT(IG,5E16.8)
2002 FCRMAT(///5X928HNOTEee CONVERGENCE FOR ONLYsI343H OFs13,

1 21H POSSIBLE FREQUFNCIES )

END

SUBROUTINE SHAPES
THIS SUBROUTINE RECOVERS AND PRINTS THE COMPLETE MODE SHAPES.
COMPLEX ARITHMETIC FOR LINFAR VISCOELASTIC MATERIALS.
LOGICAL LRI
REAL NUCsNUF
COMPLEX SsSTsAsE sV
COMPLEX ECsGCoEF 9GF oBF9DF sBCHDC
COMPLEYX CeW(1l2)
COMMON /7 7/ NNsNEINMSHINDOF sNBCsNLMsLRISPI
COMMON /ARRAY/ S(8098)9ST(19912+4)¢XM(BO)sA(O0+60)sE(60)sIVIED)
1 v(80)
COMMON /NODGEO/ R(35),2(35)
CCMMON /PROPS/ HeDosHF sHC s EF s NUF 9 GF o ECoNUC s GC o BF o LF 9 RCH CC
DIMENSION U(12)
WRITE (2,2003)
DO 800 I = 1sNMS
C = E(LY*E(])
D0 100 J = 1sNDOF

100 V(J) = (0e02040)
DO 200 K = 1+NLM
L= IVIK)

200 VIL) = CRXMILI*A(<CH])
CALL DYBSLCI(NDOF 989B09sSsVe291}
WRITE (2,20C0) I
DO 700 J = 1eNE
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IL = 4%) - 4
DO 300 K = 1+8
IK = 1L + K
300 W(K) = VIIK)
RECOVER CONDENSED DISPLACEMENTS
D0 400 K = 194
JK = K + 8
IK = JX -1
W(JK) = (0a40+0¢0)
DO 400 L = 1s1K
400 WEJK) = WIJIK) = ST(JeLoX)*W(L)
DO 500 K B 1,12
IF{REALI(WIK)) «EQe0Ne0) GO TO 450
UIKY = REALIW(X))I*CABS(WIK))I/ABSIREAL(W(K)))
GO TO 500
450 ULK) = CABS(W(K))
500 CONTINUE
COMPUTE ADDITIONAL DISPLACEMENTS OF INTEREST AND PRINT
GAMCI = U(4) + U9
GAMCU = U(B8)Y + U((10)
CHISI = (HC*GAMCI + HF*U(9))/D
CHISJ = (HC®GAMCJ + HF*#U(10)Y)/D
CHII = U3) + CHISI
CHIJ = U(7) + CHISJY
GAMO = yU(l11y - Ut12)
CHISO = (HC*U(11l) + HF*#U(12))/D
TN0 WRITE (2+2001) JeR(IV9Z (I
1 ULT)sUL2) s CHITsUL3) s CHIST U ) 9sGAMCTIsUL9)
2 CHISOsGAMO,U(11)sU(12)
3 UIS)sU(6)sCHIJsU(T)YsCHISJUSUIB) sGAMCUU(10)
800 WRITE (252002) R(NN}sZ(NN)
RETURN
2000 FORMAT(/18HOMODE SHAPE NUMBER 413/
1 5H NODE»2Xs13HMERIDIONAL s UsSXsFHRADIALY We2X9s13HROTATIONs CHI»
2 IXs6HCHI(B)Y s IXs6HCHI(S) 93X s 12HWARPINGs GAMs 7X 9 BHGAMMA(C) 97X s
3 BHGAMMA(F)/)
2001 FORMAT(8H ELEMENTsI13939Xs7TH(RsZ) =9 FOebslHssFO4b /
1 4Xs1HI98EL15.7/
2 4X91HO»60Xs4E1547/
3 4X91HU98BEL15.7/)
2002 FORMAT(S50XsTH(RsZ) =9F9als1MHssF944 )
2003 FORMAT(16H1VIBRATION MODES 7}
END

SUBROUTINE DYBSLC (NNsMMyNDIMsAsB KKK LIM)

DYBSLC IS AN SPECIAL IN-CORE BAND SOLVER FOR DYNAMIC PROBLEMS
INVOLVING CONDENSATION OF ROTATIONAL DEGRZES OF FREEDOMe.
SOLUTION IS IN COMPLEX MODE,
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ADAPTED FROM A PROGRAM BY Ce As FELIPPA.
COMPLEX A(NDIMs13s B(1)s PIVOT, C

NR = NN - 1

IF (KKK«GTsl) GC TO 300

DECOMPOSITION OF BAND MATRIX A

DO 200 N = 14ANR

M=N-1
PIVOT = A(Ns1l)
IF(CABSIFIVOT)«EQeOe0) PIVOT = (1.0E-08s 0,0)

AR = MINO (MM yNN-i)
DO 200 L = 2sMR
C = A(NsL)/PIVOT

IFICABS(C)«EQe0.0) GO TO 200

1 =M + L

J =0

DO 180 K = LsMR

J=J+1

AltlsJ) = A(lsd) — C*A(NsK)
A(NsL) = C

CONTINUE

GO TO 500

FORWARD REDUCTION OF VECTOR B FROM B(LIM) TO B(N)
AND BACKSUBSTITUTION FROM BI(N) TO B(LIM)

DO 350 N = LIMyNR

M =N~

MR = MIWT (MMoNN-M)

C = B(N)

B{N) = C/A(Ns1)

DO 350 L = 2sMR

1 =M+ L

B(l) = B(IY = A(NeL)*C

B(NN) = BUINN}/A(NN,s1)
NS = NN - LIM + 1
DO 400 K = 24NS

M = NN - K

N=M=+1

MR = MINO (MM,K)

DO 400 L = 2+MR

1 =M+ L

BIN)} = BN} = A(NoL)*¥B(I)
RETURN
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SUBROUTINE ALLMAT{A+LAMBDAsMs1AsNCALIVEC)

PROGs AUTHORS JOHN RINZEL4ReE«FUNDERLICWUNION CARBIDE CORPa
NUCLEAR DIVISIONsCENT™ aL DATA PROCESSING FACILITY,
OAK RIDGE TENNESSEE

SHARE LIBRARY PROGRAM $F2 OR AMAT WITH MODIFICATIONS

A = INPUT MATRIX OF ORDER AT LEAST M X M WHICH UPON RETURN CON-
TAINS THE EIGENVECTORS OF THE INPUT MATRIX.
LAMDA = VECTOR OF EIGENVALUES WHZRE LAMDA(I) CORRESPONDS TO
EIGENVECTOR STORED IN A(sl)e ARRANGED BY DECREASING ORDER
OF ABSOLUTE vALUE.
M = ORDER OF PROBLEM TO BE SOLVED.
1A = FIRST DIMENSION OF A(s) IN THF CALLING PROGRAM,
NCAL = INTEGER CONTAINING UPON RETURN THE NUMBER OF EIGENVALUES
CALCULATED. (THIS VALUE WILL RE LESS THAN M [F CONVERGENCE
IS NOT OBTAINFD FOR ONE OR MNRE EIGENVALUES.)
IVEC = INTEGER WwHOSE VALUE IS THE NUMBER OF EIGENVECTORS TO BE
CALCULAIED, THESE CORRESPOND TO THE EIGENVALUES OF LOWEST
MODULUS

COMPLEX A(IAs1)sH(60+60)sHLI60+60)-LAMBDAL1)}HVECT(60)
IMULT{60) sSHIFT(3) s TEMPsSINgCOSsTEMP1,,TEMP2
LOGICAL INTH(60)sTWICE
INTEGER INT(60)9sRyRP14RP2
NCAL = 0
IF(MsGTe60) GO TO 57
N=M
NCAL=N
IF(NeNE«1)GO TO 1
LAMBDA(1)=A(141)
Allsl)=1.
GO TO 57
1 ICOUNT=0
SHIFT=0.
IF(NeNEL.2)GO TO ~
2 TEMP={A(19s1)+A(2+2)+CSQRTI(A(191)+A(292))%%2~
144%(A(2,2)%A(0191)~A0291)%A(1+2))))/2.
IF(REALITEMP) ¢ NEoOe e ORGAIMAGITEMP) ¢NEWDOe)GO TO 2
LAMBDA(M)=SHIFT
LAMBDA{M=1)=A(1s1)+A(242)4SHIFT
GO TO 137
3 LAMBDA(M)=TEMP+SHIFT
LAMBDA(M=11={Al2+2)#A(191)-A(2s1)%A(1+2))/(LAMBDA(M)=SHIFT)+SHIFT
GO TO 137

REDUCE MATRIX A TO HESSENBERG FORM

4 NM2=N-2
DO 15 R=1,NM2
RP1=R+1
RP2=R+2
AB1G=0.
INT(R)=RP]
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DO 5 I=RP1N
ABSSQ=REAL(A(TsR) ) %2+ AITMAG(A(]sR) ) R%2
IF(ABSSQ.LELABIGIGO TO 5
INT{R)=]

AB1G=ABSSQ

CONTINUE

INTER=INT(R)
IF{INTERLEQ4RP1IGO TO 8
IF(ABIGsEQe0+)IGD TO 15
DO 6 1=RsN

TEMP=A(RP1lsl)
A(RP1sI)=ALINTERs1)
A(INTERs1)=TEMP

DO 7 I=1sN

TEMP=A(1,RP1)
A(TsRP1)=A(1sINTER})
A{TsINTER)=TEMP

DO 9 1=RP2sN
MULT(I)=A(I+sR)/A(RP1R)
AtTsRY=MULTI(])

DO 11 I=14RP1

TEMF=0,

DO 10 J=RP2sN
TEMP=TEMP+A( 1 +J)®MULT (D)
A(TsRPLI=A(]+RPLI+TEMP
DO 13 I=RP2,N

TEMP=OI

DO 12 J=RPZ,N N
TEMP=TEMP+A( T +J)XMULT(J)
A(IsRPL)=A{1sRPL)I+TEMP-MULTI(I ) ®A(RP]1,RP1)
DO 14 I=RP2,4N

DO 14 J=RP24N
ACTeJ)=A(TeJ)=MULTI(1)#A(RP1+J)
CONTINUE

CALCULATE EPSILON

EPS=0.

DC 16 I=]1eN
EPS=EPS+CABS(A(1s1))

DO 18 [=24N

SUM=0,

IM1=1-1

DO 17 J=1IM1,N
SUM=SUM+CABS(A(1+J}))
IF(SUMaGTEPS)IEPS=SUM
EPS=SQRT(FLOAT(N) ) #EPS#1,E~12
IF(EPS+EQe04)EPS=1,E~12
DO 19 I=1sN

DO 19 J=z1leN
HilsJ)=AlIeJ)
IF(NJNEL1)GO TO 21
LAMBDA(M)=A({1+1)+SHIFT
GO TO 157

IF(NL,EQ.2)G0 TO 2

265
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22 MN1=M~=N+1
IFIREALIA(NIN)I ) eNFe0esORJAIMAGIA(NIN) ) eNELOL)
1 IF(ABS(REAL(A(NSN=1)/A(NsN))I)+ABSIAIMAG(A(MIN=-1)/A(NyN)))=1.,E-9)
2 249241423
22 IF(ABS(REAL(A(NIN=1)))+ABS(AIMAGIAININ=1)))aGFLEPSIGO TO 25
24 LAMBDA(MNL)=A(NsN)+SHIFT

ICOUNT=0
N=N-1
GO 10 21

DETERMINE SHIFT

25 SHIFT(2)=(A(N=1sN=1)+A(NsNI+CSGRT((A(N-1sN=1)+A(NsN))#»2
1 ~4e%(AININI*A(N-1sN=-1)1-A(NsN=-1)*A(N-1sN) D)) /2.
IF(REAL(SHIFT(2))oeNEsDeeORJAIMAGISHIFT(2))eNELO)IGO TO 26
SHIFT(3}=A(N-1sN=-11+A(NsN)
GO TO 27
26 SHIFT(3)=(A(NSNI®A(N-1sN-1)-A(NIN-1)*¥A(N=14N))/SHIFT(2)
27 IF(CABS(SHIFT(2)-A(NsN))eLTeCABS(SHIFT(3)~A(NsN))IGO TO 28
INDEX=3
GO TO 29
28 INDEX=2
29 IF/CABSIAIN-14N=2)1eGELEPSIGO TO 30
LAMBDA(MNL }=SHIFT(2)+SHIFT
LAMBDA(MN1+1)=sSHIFT(3)+SHIFT
ICOUNT=0
N=N-2
GO T0 20
30 SHIFT=SHIFT+SHIFT(INDEX)
DO 31 I=1sN
31 A(191)1=A(T+1)-SHIFT(INDEX)

PERFORM GIVENS ROTATIONSs QR ITERATES

IF(ICOUNTWLEC10)GO TO 32

NCAL=M=N

GO TO 137

32 NM1l=N~1

TEMP1=A(1s1)

TEMP2=A(2,1)

DO 36 R=1sNM]

RP1=R+1

RHO=SQRT (REAL (TEMP1)*%2+AIMAG( TEMP1 ) *##2+
1 REAL(TEMP2)*#2+AIMAG(TEMP2) #%2)
IF(RHO«EQ.0+3G0 TO 36
COS=TEMP1/RHO

SIN=TEMP2/RHO

INDEX=MAXD{R~1+1)

D0 33 I=INDEXsN
TrvP=CONJGICOSI*A(Rs1)+CONJGISIN)#A(RPL»I)
A(RP1s1)=-SIN*#A(Rs])+COSHA(RP1,I])

33 A(Rs])=TEMP

TEMP1=A(RP1+RP1)

TEMP2=A(R+2sR+1)

DO 34 [=14R
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34

35
36

137

138

139

37

38

39
40

TEMP=COS®*A(1+RI+SIN*A{I+RP1)
A{1sRP1)=~CONJGISIN)#AL1+RIF+CONJIGICOSIRALL »RP1)
A{TsR)Y=TEMP

INDEX=MINO(R+24sN)

DO 3% I=RP1+INDEX

A{IsRI=SIN®ALI+RP])
A{1sRP1}=CONJGICOS)*A(TsRP])

CONTINUE

ICOUNT=1COUNT +1

GO TO 22

ARRANGE EIGENVALUES ACCORDING TO DESCENDING ABSOLUTE VALUE

NCALM = NCAL -1
DO 139 1 = 1sNCALM

TE! = LAMBDA(])
K =1
L=14+1

DO 138 J = LsNCAL
IF(CABSITEMP) JGECABS(LAMBDA(JYI})Y GO TO 138
TEMP = LAMBDA(J)

K= J

CONTINUE

IF ' KeEQal)Y GO TO 139
LAMBDA(K) = LAMBDA(I)
LAMBDA(I) = TEMP
CONTINUE

CALCULATE VECTORS

IFINCALLEQL0)IG0 TO 57
IF{IVEC.EGeD: GD TO 57
IFCIVEC.GT4NCAL) IVEC = NCAL
N=M

NMI=N-1

IF{NeNEL2)GO TO 38
EPS=AMAX1(CABS(LAMBDA(]1)) s CABS(LAMBDA(2)))*] ,E-8B
IF{EPSeEQeQe )EPS=14E~12
H{ls1)=A(1s1)

H{192)=A(1+2)

H{2s1)=A(2,1"

H{2+2)=A(292"

DO 56 L=1s1VEC

DO 40 1I=1sN

DU 39 J=1sN

HL(TsJ)=HUI D)
HLIT,1,=HLIT,1)Y-LAMBDA{L)

DO 44 I=1sNM1

MULT(I)=0.

INTH({ 1) =4FALSE.

IPl=1+1
IF(CABSIHLII+1s1))14LFeCABSIHLITI»I)))IGO TO 4z
INTH{1)=eTRUE »

DO 41 J=1sN

TEMP=HL({I+1sJ)
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HL(I+1sJi=HL(Ts)

HL{ 19 J)=TEMF .
I (REALIHL(I31))eEQe0eeANDGAIMAG(HL(I91))aEQe0ae)GO TO 44
MULT(T ) ==HLILI+1s 1) /HL(THT)

DO 43 JU=1P1lsN

HLOI+1e ) =HLOI 41 D+MILT(IIRHL(] 3 )
CONTINUE

DO 45 [=1sN

VECT(I)=1.

TWICE=,FALSE.
IF(REAL(HL(NIN)) aFQe0e e ANDATMAGIHLININ) ) oEQeQs YHLINWN)I=EPS
VECT(N)=VECTINI/HL{N¢N)}

DO 486 I=1sNM1

K=N-1

DO 47 J=KsNM1

VECTIK)=VECTIK)I-HLIKs J+1)®VECT(J+1)
IF(REAL(HL(X¢K) ) eEQa0eeANDLATVAGIHLIK 3K} ) eEQL0e YHL KK )=EPS
VECT{K)=VECTIK) /HL (K4K)

BIG=0.

DG 49 I=1sN
SUM=ABS(REAL(VECT(I)))+ABSIAIMAGIVECTLI)))
IF(SUMGT«3IG)IBIG=SUM

DO 50 I=1sN

VECT(I)=vEeCT(1)/BIG

IF(TWICEICGO TC 52

DO 51 I=1sNMl

IF(«NOTSINTH(I})GD TN 51

TEMP=VECT(])

VECT(IV=VECT(I+1)

VECT(I+1)=TEMP
VECT(I+1)1=VECT(I+11+MULT (I *VECTI(I)
TWICE=.TRUE .

GO TO 46

IF(NsEQe2)GD TO 55

NM2=N=2

DO 54 I=1sN42

N1I=N-1-1

NIl1=N-I+1

DO 53 J=NI1sN
VECT(JI=H{JsNIT ) RVECTINIT+1)+VECT(J)
INDEX=INTI(N1I)

TEMP=VECTI(NL1I+1)}

VECT(N1I+1)y=VECT(INDEX)

VECTU{INDEX)=TEMP

DO 56 1=1sN

A(TsL)=VECT(I)

RETURN

END



